Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels

Abstract

MicroRNAs (miRNAs) are a class of small, noncoding RNAs that function by regulating gene expression post-transcriptionally. Alterations in miRNA expression can strongly influence cellular physiology. Here we demonstrated cross-regulation between two components of the RNA interference (RNAi) machinery in human cells. Inhibition of exportin-5, the karyopherin responsible for pre-miRNA export, downregulated expression of Dicer, the RNase III required for pre-miRNA maturation. This effect was post-transcriptional and resulted from an increased nuclear localization of Dicer mRNA. In vitro assays and cellular RNA immunoprecipitation experiments showed that exportin-5 interacted directly with Dicer mRNA. Titration of exportin-5 by overexpression of either pre-miRNA or the adenoviral VA1 RNA resulted in loss of Dicer mRNA–exportin-5 interaction and reduction of Dicer level. This saturation also occurred during adenoviral infection and enhanced viral replication. Our study reveals an important cross-regulatory mechanism between pre-miRNA or viral small RNAs and Dicer through exportin-5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of Dicer protein level by XPO5.
Figure 2: XPO5 knockdown results in accumulation of Dicer mRNA in the nucleus.
Figure 3: Dicer mRNA specifically interacts with XPO5 in vivo and in vitro.
Figure 4: Overexpression of pre-miRNA or adenoviral VA1 RNA affects Dicer protein levels in cells.
Figure 5: XPO5 inhibition enhances adenovirus replication.

Similar content being viewed by others

References

  1. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  2. Carthew, R.W. & Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 136, 642–655 (2009).

    Article  CAS  Google Scholar 

  3. Ventura, A. & Jacks, T. MicroRNAs and cancer: short RNAs go a long way. Cell 136, 586–591 (2009).

    Article  CAS  Google Scholar 

  4. Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  Google Scholar 

  5. Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    Article  CAS  Google Scholar 

  6. Bohnsack, M.T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

    Article  CAS  Google Scholar 

  7. Zamore, P.D. & Haley, B. Ribo-gnome: the big world of small RNAs. Science 309, 1519–1524 (2005).

    Article  CAS  Google Scholar 

  8. Levy, C. et al. Lineage-specific transcriptional regulation of DICER by MITF in melanocytes. Cell 141, 994–1005 (2010).

    Article  CAS  Google Scholar 

  9. Tokumaru, S., Suzuki, M., Yamada, H., Nagino, M. & Takahashi, T. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 29, 2073–2077 (2008).

    Article  CAS  Google Scholar 

  10. Martello, G. et al. A MicroRNA targeting dicer for metastasis control. Cell 141, 1195–1207 (2010).

    Article  CAS  Google Scholar 

  11. Yi, R., Doehle, B.P., Qin, Y., Macara, I.G. & Cullen, B.R. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11, 220–226 (2005).

    Article  CAS  Google Scholar 

  12. Brownawell, A.M. & Macara, I.G. Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. J. Cell Biol. 156, 53–64 (2002).

    Article  CAS  Google Scholar 

  13. Calado, A., Treichel, N., Muller, E.C., Otto, A. & Kutay, U. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J. 21, 6216–6224 (2002).

    Article  CAS  Google Scholar 

  14. Gwizdek, C. et al. Exportin-5 mediates nuclear export of minihelix-containing RNAs. J. Biol. Chem. 278, 5505–5508 (2003).

    Article  CAS  Google Scholar 

  15. Chen, T., Brownawell, A.M. & Macara, I.G. Nucleocytoplasmic shuttling of JAZ, a new cargo protein for exportin-5. Mol. Cell. Biol. 24, 6608–6619 (2004).

    Article  CAS  Google Scholar 

  16. Gwizdek, C. et al. Minihelix-containing RNAs mediate exportin-5-dependent nuclear export of the double-stranded RNA-binding protein ILF3. J. Biol. Chem. 279, 884–891 (2004).

    Article  CAS  Google Scholar 

  17. Macara, I.G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).

    Article  CAS  Google Scholar 

  18. Köhler, A. & Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8, 761–773 (2007).

    Article  Google Scholar 

  19. Wang, Y., Zhu, W. & Levy, D.E. Nuclear and cytoplasmic mRNA quantification by SYBR green based real-time RT-PCR. Methods 39, 356–362 (2006).

    Article  CAS  Google Scholar 

  20. Gwizdek, C. et al. Terminal minihelix, a novel RNA motif that directs polymerase III transcripts to the cell cytoplasm. Terminal minihelix and RNA export. J. Biol. Chem. 276, 25910–25918 (2001).

    Article  CAS  Google Scholar 

  21. Zeng, Y. & Cullen, B.R. Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112–123 (2003).

    Article  CAS  Google Scholar 

  22. Boulon, S. et al. PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol. Cell 16, 777–787 (2004).

    Article  CAS  Google Scholar 

  23. Zeng, Y. & Cullen, B.R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. 32, 4776–4785 (2004).

    Article  CAS  Google Scholar 

  24. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  Google Scholar 

  25. Lu, S. & Cullen, B.R. Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and MicroRNA biogenesis. J. Virol. 78, 12868–12876 (2004).

    Article  CAS  Google Scholar 

  26. Mathews, M.B. & Shenk, T. Adenovirus virus-associated RNA and translation control. J. Virol. 65, 5657–5662 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhat, R.A. & Thimmappaya, B. Adenovirus mutants with DNA sequence perturbations in the intragenic promoter of VAI RNA gene allow the enhanced transcription of VAII RNA gene in HeLa cells. Nucleic Acids Res. 12, 7377–7388 (1984).

    Article  CAS  Google Scholar 

  28. Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75–84 (2009).

    Article  CAS  Google Scholar 

  29. Triboulet, R., Chang, H.M., Lapierre, R.J. & Gregory, R.I. Post-transcriptional control of DGCR8 expression by the Microprocessor. RNA 15, 1005–1011 (2009).

    Article  CAS  Google Scholar 

  30. Satterly, N. et al. Influenza virus targets the mRNA export machinery and the nuclear pore complex. Proc. Natl. Acad. Sci. USA 104, 1853–1858 (2007).

    Article  CAS  Google Scholar 

  31. Lund, E. & Dahlberg, J.E. Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb. Symp. Quant. Biol. 71, 59–66 (2006).

    Article  CAS  Google Scholar 

  32. Hirt, B. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26, 365–369 (1967).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Kiernan and members of the Laboratoire de Virologie Moléculaire for helpful discussions and for critically reading the manuscript, and to G. Akusjärvi (Uppsala University, Uppsala, Sweden), B. Cullen (Duke University, Durham, North Carolina, USA) and I. Macara (University of Virginia, Charlottesville, Virginia, USA) for providing reagents. Work in M.B.'s laboratory was supported by Agence Nationale de Recherche sur le SIDA, SIDACTION, Agence Nationale de la Recherche-BLAN-0040, European Research Council (ERC 250333) and the Fondation pour la Recherche Médicale Equipe labéllisée FRM.

Author information

Authors and Affiliations

Authors

Contributions

Y.B. and M.B. planned and supervised the project and wrote the paper. Y.B. designed and performed most of the experiments with the help of C.C.-B. R.T. initiated the project. D.G. performed experiment in O.V.'s laboratory. C.G., C.D. and E.J.K. helped perform experiments and provided valuable reagents.

Corresponding authors

Correspondence to Yamina Bennasser or Monsef Benkirane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 7675 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennasser, Y., Chable-Bessia, C., Triboulet, R. et al. Competition for XPO5 binding between Dicer mRNA, pre-miRNA and viral RNA regulates human Dicer levels. Nat Struct Mol Biol 18, 323–327 (2011). https://doi.org/10.1038/nsmb.1987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing