Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-molecule paleoenzymology probes the chemistry of resurrected enzymes

Abstract

It is possible to travel back in time at the molecular level by reconstructing proteins from extinct organisms. Here we report the reconstruction, based on sequence predicted by phylogenetic analysis, of seven Precambrian thioredoxin enzymes (Trx) dating back between ~1.4 and ~4 billion years (Gyr). The reconstructed enzymes are up to 32 °C more stable than modern enzymes, and the oldest show markedly higher activity than extant ones at pH 5. We probed the mechanisms of reduction of these enzymes using single-molecule force spectroscopy. From the force dependency of the rate of reduction of an engineered substrate, we conclude that ancient Trxs use chemical mechanisms of reduction similar to those of modern enzymes. Although Trx enzymes have maintained their reductase chemistry unchanged, they have adapted over 4 Gyr to the changes in temperature and ocean acidity that characterize the evolution of the global environment from ancient to modern Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic analysis of Trx enzymes and ancestral sequence reconstruction.
Figure 2: Single-molecule disulfide reduction assay.
Figure 3: Force dependence of disulfide reduction by ancestral Trx enzymes.
Figure 4: Rate constants of disulfide bond reduction at pH 5.

Similar content being viewed by others

References

  1. Benner, S.A., Sassi, S.O. & Gaucher, E.A. Molecular paleoscience: systems biology from the past. Adv. Enzymol. Relat. Areas Mol. Biol. 75, 1–132 (2007).

    CAS  PubMed  Google Scholar 

  2. Thornton, J.W. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat. Rev. Genet. 5, 366–375 (2004).

    Article  CAS  Google Scholar 

  3. Liberles, D.A. (ed.) Ancestral Sequence Reconstruction (Oxford Univ. Press, Oxford, New York, 2007).

  4. Hall, B.G. Simple and accurate estimation of ancestral protein sequences. Proc. Natl. Acad. Sci. USA 103, 5431–5436 (2006).

    Article  CAS  Google Scholar 

  5. Thornton, J.W., Need, E. & Crews, D. Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science 301, 1714–1717 (2003).

    Article  CAS  Google Scholar 

  6. Thomson, J.M. et al. Resurrecting ancestral alcohol dehydrogenases from yeast. Nat. Genet. 37, 630–635 (2005).

    Article  CAS  Google Scholar 

  7. Boussau, B., Blanquart, S., Necsulea, A., Lartillot, N. & Gouy, M. Parallel adaptations to high temperatures in the Archaean eon. Nature 456, 942–945 (2008).

    Article  CAS  Google Scholar 

  8. Chang, B.S., Jonsson, K., Kazmi, M.A., Donoghue, M.J. & Sakmar, T.P. Recreating a functional ancestral archosaur visual pigment. Mol. Biol. Evol. 19, 1483–1489 (2002).

    Article  CAS  Google Scholar 

  9. Gaucher, E.A., Thomson, J.M., Burgan, M.F. & Benner, S.A. Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425, 285–288 (2003).

    Article  CAS  Google Scholar 

  10. Nisbet, E.G. & Sleep, N.H. The habitat and nature of early life. Nature 409, 1083–1091 (2001).

    Article  CAS  Google Scholar 

  11. Pollock, D.D. & Chang, B.S.W. in Ancestral Sequence Reconstruction (ed. Liberles, D.A.) 85–94 (Oxford Univ. Press, Oxford, New York, 2007).

  12. Gaucher, E.A., Govindarajan, S. & Ganesh, O.K. Palaeotemperature trend for Precambrian life inferred from resurrected proteins. Nature 451, 704–707 (2008).

    Article  CAS  Google Scholar 

  13. Zalatan, J.G. & Herschlag, D. The far reaches of enzymology. Nat. Chem. Biol. 5, 516–520 (2009).

    Article  CAS  Google Scholar 

  14. Holmgren, A. Thioredoxin. Annu. Rev. Biochem. 54, 237–271 (1985).

    Article  CAS  Google Scholar 

  15. Wiita, A.P. et al. Probing the chemistry of thioredoxin catalysis with force. Nature 450, 124–127 (2007).

    Article  CAS  Google Scholar 

  16. Perez-Jimenez, R. et al. Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force spectroscopy. Nat. Struct. Mol. Biol. 16, 890–896 (2009).

    Article  CAS  Google Scholar 

  17. Hedges, S.B. & Kumar, S. The Timetree of Life (Oxford Univ. Press, Oxford, 2009).

  18. Yang, Z., Kumar, S. & Nei, M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141, 1641–1650 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Godoy-Ruiz, R. et al. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments. J. Mol. Biol. 362, 966–978 (2006).

    Article  CAS  Google Scholar 

  20. Kice, J.L. Nucleophilic substitution at different oxidation states of sulfur. in Progress in Inorganic Chemistry (ed. Edwards, J.O.) 147–206 (John Wiley & Sons, 2007).

  21. Wiita, A.P., Ainavarapu, S.R., Huang, H.H. & Fernandez, J.M. Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl. Acad. Sci. USA 103, 7222–7227 (2006).

    Article  CAS  Google Scholar 

  22. Koti Ainavarapu, S.R., Wiita, A.P., Dougan, L., Uggerud, E. & Fernandez, J.M. Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction. J. Am. Chem. Soc. 130, 6479–6487 (2008).

    Article  Google Scholar 

  23. Garcia-Manyes, S., Liang, J., Szoszkiewicz, R., Kuo, T.L. & Fernandez, J.M. Force-activated reactivity switch in a bimolecular chemical reaction. Nat. Chem. 1, 236–242 (2009).

    Article  CAS  Google Scholar 

  24. Liang, J. & Fernandez, J.M. Mechanochemistry: one bond at a time. ACS Nano 3, 1628–1645 (2009).

    Article  CAS  Google Scholar 

  25. Holmgren, A. Reduction of disulfides by thioredoxin. Exceptional reactivity of insulin and suggested functions of thioredoxin in mechanism of hormone action. J. Biol. Chem. 254, 9113–9119 (1979).

    CAS  Google Scholar 

  26. Suarez, M. et al. Using multi-objective computational design to extend protein promiscuity. Biophys. Chem. 147, 13–19 (2010).

    Article  CAS  Google Scholar 

  27. Holmgren, A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J. Biol. Chem. 254, 9627–9632 (1979).

    CAS  Google Scholar 

  28. Walker, J.C.G. Possible limits on the composition of the archean ocean. Nature 302, 518–520 (1983).

    Article  CAS  Google Scholar 

  29. Russell, M.J. & Hall, A.J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 154, 377–402 (1997).

    Article  CAS  Google Scholar 

  30. Dyson, H.J. et al. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57. Biochemistry 36, 2622–2636 (1997).

    Article  CAS  Google Scholar 

  31. Xu, S.Z. et al. TRPC channel activation by extracellular thioredoxin. Nature 451, 69–72 (2008).

    Article  CAS  Google Scholar 

  32. Windle, H.J., Fox, A., Ni Eidhin, D. & Kelleher, D. The thioredoxin system of Helicobacter pylori. J. Biol. Chem. 275, 5081–5089 (2000).

    Article  CAS  Google Scholar 

  33. Ming, H. et al. Crystal structure of thioredoxin domain of ST2123 from thermophilic archaea Sulfolobus tokodaii strain7. Proteins 69, 204–208 (2007).

    Article  CAS  Google Scholar 

  34. Baker-Austin, C. & Dopson, M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 15, 165–171 (2007).

    Article  CAS  Google Scholar 

  35. Starks, C.M., Francois, J.A., MacArthur, K.M., Heard, B.Z. & Kappock, T.J. Atomic-resolution crystal structure of thioredoxin from the acidophilic bacterium Acetobacter aceti. Protein Sci. 16, 92–98 (2007).

    Article  CAS  Google Scholar 

  36. Menzel, U. & Gottschalk, G. The internal pH of Acetobacterium wieringae and Acetobacter aceti during growth and production of acetic acid. Arch. Microbiol. 143, 47–51 (1985).

    Article  CAS  Google Scholar 

  37. Knauth, L.P. & Lowe, D.R. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull. 115, 566–580 (2003).

    Article  CAS  Google Scholar 

  38. Schulte, M. The emergence of life on earth. Oceanography (Wash. D.C.) 20, 42–49 (2007).

    Article  Google Scholar 

  39. Gogarten-Boekels, M., Hilario, E. & Gogarten, J.P. The effects of heavy meteorite bombardment on the early evolution—the emergence of the three domains of life. Orig. Life Evol. Biosph. 25, 251–264 (1995).

    Article  CAS  Google Scholar 

  40. Peregrin-Alvarez, J.M., Tsoka, S. & Ouzounis, C.A. The phylogenetic extent of metabolic enzymes and pathways. Genome Res. 13, 422–427 (2003).

    Article  CAS  Google Scholar 

  41. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  42. Yang, Z.H. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS  Google Scholar 

  43. Perez-Jimenez, R. et al. Force-clamp spectroscopy detects residue co-evolution in enzyme catalysis. J. Biol. Chem. 283, 27121–27129 (2008).

    Article  CAS  Google Scholar 

  44. Ibarra-Molero, B., Loladze, V.V., Makhatadze, G.I. & Sanchez-Ruiz, J.M. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability. Biochemistry 38, 8138–8149 (1999).

    Article  CAS  Google Scholar 

  45. Fernandez, J.M. & Li, H. Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303, 1674–1678 (2004).

    Article  CAS  Google Scholar 

  46. Florin, E.L. et al. Sensing specific molecular interactions with the atomic-force microscope. Biosens. Bioelectron. 10, 895–901 (1995).

    Article  CAS  Google Scholar 

  47. Nelder, J.A. & Mead, R.A. Simplex method for function minimization. Comput. J. 7, 308–313 (1965).

    Article  Google Scholar 

Download references

Acknowledgements

Supported by the US National Institutes of Health (HL061228 and HL066030 to J.M.F.); the Spanish Ministry of Science and Innovation (J.M.S.-R.); NASA Astrobiology (Georgia Institute of Technology); NASA Exobiology (E.A.G.); Fundación Ibercaja and Fundación Caja Madrid (R.P.-J. and S.G.-M.); and Fundación Alfonso Martín Escudero (J.A.-C.). We thank B. Ibarra-Molero (University of Granada) for assistance with bulk enzymatic assays.

Author information

Authors and Affiliations

Authors

Contributions

R.P.-J., J.M.S.-R., E.A.G. and J.M.F. designed the research; Z.-M.Z. and E.A.G. conducted the phylogenetic analysis and sequence reconstruction; A.I.-P. and J.M.S.-R. expressed and purified the ancestral enzymes and conducted the calorimetric measurements and analysis; T.J.K. provided A. aceti Trx; M.T. provided S. tokodaii Trx; A.H. provided human TRX; R.P.-J., I.S.-R., J.A.-C., P.K. and S.G.-M. performed AFM experiments; R.P.-J. and I.S.-R. analyzed AFM data; R.P.-J., E.A.G. and J.M.F. wrote the paper; all authors participated in revising the manuscript.

Corresponding authors

Correspondence to Raul Perez-Jimenez or Julio M Fernandez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Note (PDF 1507 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Jimenez, R., Inglés-Prieto, A., Zhao, ZM. et al. Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol 18, 592–596 (2011). https://doi.org/10.1038/nsmb.2020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing