Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structural organization of brain-derived mammalian prions examined by hydrogen-deuterium exchange

Abstract

One of the mysteries in prion research is the structure of the infectious form of mammalian prion protein PrPSc. Here we used mass spectrometry analysis of hydrogen-deuterium exchange to examine brain-derived PrPSc. Our data indicate that, contrary to popular models, prion-protein conversion involves refolding of the entire region from residue ~80–90 to the C-terminus, which in PrPSc consists of β-strands and relatively short turns and/or loops, with no native α-helices present.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deuterium incorporation for peptic fragments derived from different types of misfolded prion-protein aggregates.
Figure 2: Schematic representation of prion-protein secondary structure in the β-helix (B) and spiral (S) models of PrPSc.
Figure 3: Pairwise comparison of difference in deuterium incorporation after 240‐h exchange for different PrPSc strains.

Similar content being viewed by others

References

  1. Prusiner, S.B. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  Google Scholar 

  2. Cobb, N.J. & Surewicz, W.K. Biochemistry 48, 2574–2585 (2009).

    Article  CAS  Google Scholar 

  3. Castilla, J., Saa, P., Hetz, C. & Soto, C. Cell 121, 195–206 (2005).

    Article  CAS  Google Scholar 

  4. Deleault, N.R., Harris, B.T., Rees, J.R. & Supattapone, S. Proc. Natl. Acad. Sci. USA 104, 9741–9746 (2007).

    Article  CAS  Google Scholar 

  5. Kim, J.I. et al. J. Biol. Chem. 285, 14083–14087 (2010).

    Article  CAS  Google Scholar 

  6. Wang, F., Wang, X., Yuan, C.G. & Ma, J. Science 327, 1132–1135 (2010).

    Article  CAS  Google Scholar 

  7. Wüthrich, K. & Riek, R. Adv. Protein Chem. 57, 55–82 (2001).

    Article  Google Scholar 

  8. Caughey, B.W. et al. Biochemistry 30, 7672–7680 (1991).

    Article  CAS  Google Scholar 

  9. Safar, J., Roller, P.P., Gajdusek, D.C. & Gibbs, C.J. Jr. Protein Sci. 2, 2206–2216 (1993).

    Article  CAS  Google Scholar 

  10. Gasset, M., Baldwin, M.A., Fletterick, R.J. & Prusiner, S.B. Proc. Natl. Acad. Sci. USA 90, 1–5 (1993).

    Article  CAS  Google Scholar 

  11. Toyama, B.H., Kelly, M.J., Gross, J.D. & Weissman, J.S. Nature 449, 233–237 (2007).

    Article  CAS  Google Scholar 

  12. Lu, X., Wintrode, P.L. & Surewicz, W.K. Proc. Natl. Acad. Sci. USA 104, 1510–1515 (2007).

    Article  CAS  Google Scholar 

  13. Chesebro, B. et al. Science 308, 1435–1439 (2005).

    Article  CAS  Google Scholar 

  14. Cobb, N.J., Sonnichsen, F.D., McHaourab, H. & Surewicz, W.K. Proc. Natl. Acad. Sci. USA 104, 18946–18951 (2007).

    Article  CAS  Google Scholar 

  15. Govaerts, C., Wille, H., Prusiner, S.B. & Cohen, F.E. Proc. Natl. Acad. Sci. USA 101, 8342–8347 (2004).

    Article  CAS  Google Scholar 

  16. Wille, H. et al. Proc. Natl. Acad. Sci. USA 106, 16990–16995 (2009).

    Article  CAS  Google Scholar 

  17. DeMarco, M.L. & Daggett, V. Proc. Natl. Acad. Sci. USA 101, 2293–2298 (2004).

    Article  CAS  Google Scholar 

  18. Spassov, S., Beekes, M. & Naumann, D. Biochim. Biophys. Acta 1760, 1138–1149 (2006).

    Article  CAS  Google Scholar 

  19. Wickner, R.B., Shewmaker, F., Kryndushkin, D. & Edskes, H.K. Bioessays 30, 955–964 (2008).

    Article  CAS  Google Scholar 

  20. Sawaya, M.R. et al. Nature 447, 453–457 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by US National Institutes of Health grants NS44158, NS38604 and AG14359, and by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases.

Author information

Authors and Affiliations

Authors

Contributions

V.S. conducted and analyzed H/D exchange experiments. G.J.R. and D.K.O. did all animal-associated work, from animal inoculations to dissection of brain tissue. G.S.B., D.K.O. and G.J.R. prepared PrPSc samples and carried out their biochemical characterization. B.C. did FTIR experiments. W.K.S. wrote the manuscript and coordinated the entire project. G.S.B., V.S. and B.C. discussed the results and revised the manuscript.

Corresponding author

Correspondence to Witold K Surewicz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Methods and Supplementary Discussion (PDF 2703 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnovas, V., Baron, G., Offerdahl, D. et al. Structural organization of brain-derived mammalian prions examined by hydrogen-deuterium exchange. Nat Struct Mol Biol 18, 504–506 (2011). https://doi.org/10.1038/nsmb.2035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing