Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy

Abstract

Myotonic dystrophy is an RNA gain-of-function disease caused by expanded CUG or CCUG repeats, which sequester the RNA binding protein MBNL1. Here we describe a newly discovered function for MBNL1 as a regulator of pre-miR-1 biogenesis and find that miR-1 processing is altered in heart samples from people with myotonic dystrophy. MBNL1 binds to a UGC motif located within the loop of pre-miR-1 and competes for the binding of LIN28, which promotes pre-miR-1 uridylation by ZCCHC11 (TUT4) and blocks Dicer processing. As a consequence of miR-1 loss, expression of GJA1 (connexin 43) and CACNA1C (Cav1.2), which are targets of miR-1, is increased in both DM1- and DM2-affected hearts. CACNA1C and GJA1 encode the main calcium- and gap-junction channels in heart, respectively, and we propose that their misregulation may contribute to the cardiac dysfunctions observed in affected persons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The processing of miR-1 is altered in myotonic dystrophies.
Figure 2: MBNL1 regulates the processing of miR-1.
Figure 3: LIN28 regulates the processing of miR-1.
Figure 4: Targets of miR-1 are upregulated in myotonic dystrophies.
Figure 5: Model of miR-1 alteration in myotonic dystrophies.

Similar content being viewed by others

References

  1. Brook, J.D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Fu, Y.H. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Mahadevan, M. et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255, 1253–1255 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Liquori, C.L. et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 293, 864–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Miller, J.W. et al. Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kanadia, R.N. et al. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Ho, T.H. et al. Muscleblind proteins regulate alternative splicing. EMBO J. 23, 3103–3112 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanadia, R.N. et al. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc. Natl. Acad. Sci. USA 103, 11748–11753 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Philips, A.V., Timchenko, L.T. & Cooper, T.A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280, 737–741 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Kuyumcu-Martinez, N.M. et al. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol. Cell 28, 68–78 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mankodi, A. et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769–1773 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, X. et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. Hum. Mol. Genet. 15, 2087–2097 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kalsotra, A. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc. Natl. Acad. Sci. USA 105, 20333–20338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Savkur, R.S. et al. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet. 29, 40–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Mankodi, A. et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10, 35–44 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Charlet-B., N. et al. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol. Cell 10, 45–53 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Wheeler, T.M. et al. Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J. Clin. Invest. 117, 3952–3957 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Groh, W.J. et al. Electrocardiographic abnormalities and sudden death in myotonic dystrophy type 1. N. Engl. J. Med. 358, 2688–2697 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Pelargonio, G. et al. Myotonic dystrophy and the heart. Heart 88, 665–670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Phillips, M.F. & Harper, P.S. Cardiac disease in myotonic dystrophy. Cardiovasc. Res. 33, 13–22 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Lazarus, A. et al. Long-term follow-up of arrhythmias in patients with myotonic dystrophy treated by pacing: a multicenter diagnostic pacemaker study. J. Am. Coll. Cardiol. 40, 1645–1652 (2002).

    Article  PubMed  Google Scholar 

  22. Wang, G.S. et al. Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. J. Clin. Invest. 117, 2802–2811 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahadevan, M.S. et al. Reversible model of RNA toxicity and cardiac conduction defects in myotonic dystrophy. Nat. Genet. 38, 1066–1070 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sayed, D. et al. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100, 416–424 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Carè, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    Article  PubMed  Google Scholar 

  26. Yang, B. et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486–491 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, Y. et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell 129, 303–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Schoser, B.G. et al. Sudden cardiac death in myotonic dystrophy type 2. Neurology 63, 2402–2404 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Denli, A.M. et al. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lund, E. et al. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Yi, R. et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, H. et al. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Chendrimada, T.P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goers, E.S. et al. MBNL1 binds GC motifs embedded in pyrimidines to regulate alternative splicing. Nucleic Acids Res. 38, 2467–2484 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan, Y. et al. Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. Nucleic Acids Res. 35, 5474–5486 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32, 276–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Hagan, J.P. et al. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 16, 1021–1025 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, D.H. & Moss, E.G. Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expr. Patterns 3, 719–726 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kalsotra, A. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart. Proc. Natl. Acad. Sci. USA 105, 20333–20338 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ikeda, S. et al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell. Biol. 8, 2193–2204 (2009).

    Article  Google Scholar 

  45. Terentyev, D. et al. miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56α and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ. Res. 104, 514–521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Elia, L. et al. Reciprocal regulation of microRNA-1 and insulin-like growth factor-1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120, 2377–2385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, Q. et al. Attenuation of microRNA-1 derepresses the cytoskeleton regulatory protein twinfilin-1 to provoke cardiac hypertrophy. J. Cell Sci. 123, 2444–2452 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Splawski, I. et al. CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19–31 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Hirai, H. et al. MyoD regulates apoptosis of myoblasts through microRNA-mediated down-regulation of Pax3. J. Cell Biol. 191, 347–365 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, J.F. et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J. Cell Biol. 190, 867–879 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cacchiarelli, D. et al. MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin / nNOS pathway. Cell Metab. 12, 341–351 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, J.F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 38, 228–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Yan, D. et al. MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J. Biol. Chem. 284, 29596–29604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Furling, D., Lemieux, D., Taneja, K. & Puymirat, J. Decreased levels of myotonic dystrophy protein kinase (DMPK) and delayed differentiation in human myotonic dystrophy myoblasts. Neuromuscul. Disord. 8, 728–735 (2001).

    Article  Google Scholar 

  55. Furling, D. et al. Defective satellite cells in congenital myotonic dystrophy. Hum. Mol. Genet. 10, 2079–2087 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Guil, S. & Cáceres, J.F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14, 591–596 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Davis, B.N. et al. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol. Cell 39, 373–384 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trabucchi, M. et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459, 1010–1014 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, W. et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 13, 13–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Nakamori, M. et al. Aberrantly spliced α-dystrobrevin alters α-syntrophin binding in myotonic dystrophy type 1. Neurology 70, 677–685 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Cooper (Baylor College of Medicine) for the gift of the DT960 and tgCUGBP1 plasmids, C. Branlant (National Center of Scientific Research) for the pGEX-MBNL1-Δ101 (MBNL1ΔCter) vector, M. Swanson (University of Florida) for the pGEX-6P-MBNL1-His vector, C. Thornton (University of Rochester) for the polyclonal antibody against MBNL1, N. Kim (University of Seoul) for the pri-miR-16, Flag-TUT4, His-LIN28 and Flag-LIN28 plasmids, P. Provost (Université Laval) for the gift of the Myc-Dicer plasmid and all members of the French Myotonic Dystrophy Network for fruitful discussion. This work was supported by Institut National de la Santé et de la Recherche Médicale (INSERM) AVENIR (N.C.-B.), Agence nationale de la recherche (ANR) GENOPAT P007942 (N.C.B.), Association Française contre les Myopathies (AFM) MNM1-12982 (N.C.B.), the UPMC-emergence program (D.F), US National Institutes of Health (NIH) P30 AR057220 (J.W.D.), Muscular Dystrophy Center Core Laboratories (J.W.D.), the Ministère de l'enseignement supérieur et de la recherche and AFM (F.R., F.F.) and the University of Strasbourg (F.R., F.F.).

Author information

Authors and Affiliations

Authors

Contributions

Experiments were conducted by F.R., F.F., C.F., J.-P.V., D.D., N.D., M.-C.F., A.N., D.A. and B.J. Clinical samples and patient data were obtained from J.W.D., D.D., K.W., D.F., G.G., H.F., D.D., M.P.T. and from the Research Resource Network supported by the Research Grant for Nervous and Mental Disorders from the Ministry of Health, Labour and Welfare, Japan. The study was designed and coordinated by N.D., D.F. and N.C.-B. The paper was written by N.C.-B.

Corresponding author

Correspondence to Nicolas Charlet-Berguerand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Table 1 and Supplementary Methods (PDF 979 kb)

Supplementary Data

Microarray data. (a) Analysis using the Agilent GeneSpring GX Software of miRNA microarray performed on RNA extracted from three independent cultures of primary muscle cultures (differentiated 10 days) derived from controls and age-matched DM1 patients. Among the various miRNA with a mis-regulation of fold change >2 only, miR-1, miR-126, miR-138, miR-146, miR-199 and miR-499 had a corrected p value < 0.05. (b) Raw data and crude analysis using excel. Data are accessible through NCBI GEO GSE24109. (XLS 3656 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rau, F., Freyermuth, F., Fugier, C. et al. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol 18, 840–845 (2011). https://doi.org/10.1038/nsmb.2067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2067

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing