Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrating energy calculations with functional assays to decipher the specificity of G protein–RGS protein interactions

Abstract

The diverse Regulator of G protein Signaling (RGS) family sets the timing of G protein signaling. To understand how the structure of RGS proteins determines their common ability to inactivate G proteins and their selective G protein recognition, we combined structure-based energy calculations with biochemical measurements of RGS activity. We found a previously unidentified group of variable 'Modulatory' residues that reside at the periphery of the RGS domain–G protein interface and fine-tune G protein recognition. Mutations of Modulatory residues in high-activity RGS proteins impaired RGS function, whereas redesign of low-activity RGS proteins in critical Modulatory positions yielded complete gain of function. Therefore, RGS proteins combine a conserved core interface with peripheral Modulatory residues to selectively optimize G protein recognition and inactivation. Finally, we show that our approach can be extended to analyze interaction specificity across other large protein families.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The GAP activities of ten representative RGS domains are not correlated with their subfamily classification.
Figure 2: Positions of Significant & Conserved and Modulatory residues in multiple RGS proteins.
Figure 3: Mutations in Modulatory positions impair the GAP activities of RGS4 and RGS16 in an additive manner.
Figure 4: Redesign of RGS17 gain-of-function mutants.
Figure 5: Redesign of RGS18 gain-of-function mutants.
Figure 6: Residues contributing substantially to colicin E7–immunity protein interactions.
Figure 7: Positions of Significant & Conserved and Modulatory residues in the Gα subunits interacting with RGS domains.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Siderovski, D.P., Hessel, A., Chung, S., Mak, T.W. & Tyers, M. A new family of regulators of G-protein-coupled receptors? Curr. Biol. 6, 211–212 (1996).

    Article  CAS  Google Scholar 

  2. Koelle, M.R. & Horvitz, H.R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84, 115–125 (1996).

    Article  CAS  Google Scholar 

  3. Berman, D.M., Wikie, T.M. & Gilman, A.G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein α subunits. Cell 86, 445–452 (1996).

    Article  CAS  Google Scholar 

  4. Hunt, T.W., Fields, T.A., Casey, P.J. & Peralta, E.G. RGS10 is a selective activator of Gαi GTPase activity. Nature 383, 175–177 (1996).

    Article  CAS  Google Scholar 

  5. Watson, N., Linder, M.E., Druey, K.M., Kehrl, J.H. & Blumer, K.J. RGS family members: GTPase-activating proteins for heterotrimeric G-protein α-subunits. Nature 383, 172–175 (1996).

    Article  CAS  Google Scholar 

  6. Ross, E.M. & Wilkie, T.M. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem. 69, 795–827 (2000).

    Article  CAS  Google Scholar 

  7. Hollinger, S. & Hepler, J.R. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol. Rev. 54, 527–559 (2002).

    Article  CAS  Google Scholar 

  8. Neubig, R.R. & Siderovski, D.P. Regulators of G-protein signalling as new central nervous system drug targets. Nat. Rev. Drug Discov. 1, 187–197 (2002).

    Article  CAS  Google Scholar 

  9. Neitzel, K.L. & Hepler, J.R. Cellular mechanisms that determine selective RGS protein regulation of G protein-coupled receptor signaling. Semin. Cell Dev. Biol. 17, 383–389 (2006).

    Article  CAS  Google Scholar 

  10. Hurst, J.H. & Hooks, S.B. Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochem. Pharmacol. 78, 1289–1297 (2009).

    Article  CAS  Google Scholar 

  11. Wang, Q., Liu, M., Mullah, B., Siderovski, D.P. & Neubig, R.R. Receptor-selective effects of endogenous RGS3 and RGS5 to regulate mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J. Biol. Chem. 277, 24949–24958 (2002).

    Article  CAS  Google Scholar 

  12. Tang, K.M. et al. Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat. Med. 9, 1506–1512 (2003).

    Article  CAS  Google Scholar 

  13. Xie, G.X. & Palmer, P.P. How regulators of G protein signaling achieve selective regulation. J. Mol. Biol. 366, 349–365 (2007).

    Article  CAS  Google Scholar 

  14. Cifelli, C. et al. RGS4 regulates parasympathetic signaling and heart rate control in the sinoatrial node. Circ. Res. 103, 527–535 (2008).

    Article  CAS  Google Scholar 

  15. Bansal, G., Druey, K.M. & Xie, Z. R4 RGS proteins: regulation of G-protein signaling and beyond. Pharmacol. Ther. 116, 473–495 (2007).

    Article  CAS  Google Scholar 

  16. Bansal, G., Xie, Z., Rao, S., Nocka, K.H. & Druey, K.M. Suppression of immunoglobulin E-mediated allergic responses by regulator of G protein signaling 13. Nat. Immunol. 9, 73–80 (2008).

    Article  CAS  Google Scholar 

  17. Laroche, G., Giguere, P.M., Roth, B.L., Trejo, J. & Siderovski, D.P. RNA interference screen for RGS protein specificity at muscarinic and protease-activated receptors reveals bidirectional modulation of signaling. Am. J. Physiol. Cell Physiol. 299, C654–C664 (2010).

    Article  CAS  Google Scholar 

  18. Sowa, M.E. et al. Prediction and confirmation of a site critical for effector regulation of RGS domain activity. Nat. Struct. Biol. 8, 234–237 (2001).

    Article  CAS  Google Scholar 

  19. Martemyanov, K.A. & Arshavsky, V.Y. Biology and functions of the RGS9 isoforms. Prog. Mol. Biol. Transl. Sci. 86, 205–227 (2009).

    Article  CAS  Google Scholar 

  20. Skiba, N.P., Hopp, J.A. & Arshavsky, V.Y. The effector enzyme regulates the duration of G protein signaling in vertebrate photoreceptors by increasing the affinity between transducin and RGS protein. J. Biol. Chem. 275, 32716–32720 (2000).

    Article  CAS  Google Scholar 

  21. Heximer, S.P., Watson, N., Linder, M.E., Blumer, K.J. & Hepler, J.R. RGS2/G0S8 is a selective inhibitor of Gqα function. Proc. Natl. Acad. Sci. USA 94, 14389–14393 (1997).

    Article  CAS  Google Scholar 

  22. Heximer, S.P. et al. G protein selectivity is a determinant of RGS2 function. J. Biol. Chem. 274, 34253–34259 (1999).

    Article  CAS  Google Scholar 

  23. Ingi, T. et al. Dynamic regulation of RGS2 suggests a novel mechanism in G-protein signaling and neuronal plasticity. J. Neurosci. 18, 7178–7188 (1998).

    Article  CAS  Google Scholar 

  24. Tesmer, J.J., Berman, D.M., Gilman, A.G. & Sprang, S.R. Structure of RGS4 bound to AlF4–activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 (1997).

    Article  CAS  Google Scholar 

  25. Kimple, A.J. et al. Structural determinants of G-protein α subunit selectivity by regulator of G-protein signaling 2 (RGS2). J. Biol. Chem. 284, 19402–19411 (2009).

    Article  CAS  Google Scholar 

  26. Slep, K.C. et al. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A. Nature 409, 1071–1077 (2001).

    Article  CAS  Google Scholar 

  27. Soundararajan, M. et al. Structural diversity in the RGS domain and its interaction with heterotrimeric G protein α-subunits. Proc. Natl. Acad. Sci. USA 105, 6457–6462 (2008).

    Article  CAS  Google Scholar 

  28. Slep, K.C. et al. Molecular architecture of Gαo and the structural basis for RGS16-mediated deactivation. Proc. Natl. Acad. Sci. USA 105, 6243–6248 (2008).

    Article  CAS  Google Scholar 

  29. Posner, B.A., Mukhopadhyay, S., Tesmer, J.J., Gilman, A.G. & Ross, E.M. Modulation of the affinity and selectivity of RGS protein interaction with G α subunits by a conserved asparagine/serine residue. Biochemistry 38, 7773–7779 (1999).

    Article  CAS  Google Scholar 

  30. Kosloff, M. & Selinger, Z. GTPase catalysis by Ras and other G-proteins: insights from Substrate Directed SuperImposition. J. Mol. Biol. 331, 1157–1170 (2003).

    Article  CAS  Google Scholar 

  31. Sprang, S.R., Chen, Z. & Du, X. Structural basis of effector regulation and signal termination in heterotrimeric Gα proteins. Adv. Protein Chem. 74, 1–65 (2007).

    Article  CAS  Google Scholar 

  32. Sowa, M.E., He, W., Wensel, T.G. & Lichtarge, O. A regulator of G protein signaling interaction surface linked to effector specificity. Proc. Natl. Acad. Sci. USA 97, 1483–1488 (2000).

    Article  CAS  Google Scholar 

  33. Siderovski, D.P. & Willard, F.S. The GAPs, GEFs, and GDIs of heterotrimeric G-protein α subunits. Int. J. Biol. Sci. 1, 51–66 (2005).

    Article  CAS  Google Scholar 

  34. Sheinerman, F.B., Al-Lazikani, B. & Honig, B. Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains. J. Mol. Biol. 334, 823–841 (2003).

    Article  CAS  Google Scholar 

  35. Sheinerman, F.B. & Honig, B. On the role of electrostatic interactions in the design of protein-protein interfaces. J. Mol. Biol. 318, 161–177 (2002).

    Article  CAS  Google Scholar 

  36. Srinivasa, S.P., Watson, N., Overton, M.C. & Blumer, K.J. Mechanism of RGS4, a GTPase-activating protein for G protein α subunits. J. Biol. Chem. 273, 1529–1533 (1998).

    Article  CAS  Google Scholar 

  37. Natochin, M., McEntaffer, R.L. & Artemyev, N.O. Mutational analysis of the Asn residue essential for RGS protein binding to G-proteins. J. Biol. Chem. 273, 6731–6735 (1998).

    Article  CAS  Google Scholar 

  38. Wieland, T., Bahtijari, N., Zhou, X.B., Kleuss, C. & Simon, M.I. Polarity exchange at the interface of regulators of G protein signaling with G protein α-subunits. J. Biol. Chem. 275, 28500–28506 (2000).

    Article  CAS  Google Scholar 

  39. Kortemme, T. & Baker, D. A simple physical model for binding energy hot spots in protein-protein complexes. Proc. Natl. Acad. Sci. USA 99, 14116–14121 (2002).

    Article  CAS  Google Scholar 

  40. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533 (2010).

    Article  CAS  Google Scholar 

  41. Kühlmann, U.C., Pommer, A.J., Moore, G.R., James, R. & Kleanthous, C. Specificity in protein-protein interactions: the structural basis for dual recognition in endonuclease colicin-immunity protein complexes. J. Mol. Biol. 301, 1163–1178 (2000).

    Article  Google Scholar 

  42. Schreiber, G. & Keating, A.E. Protein binding specificity versus promiscuity. Curr. Opin. Struct. Biol. 21, 50–61 (2010).

    Article  Google Scholar 

  43. Kortemme, T. et al. Computational redesign of protein-protein interaction specificity. Nat. Struct. Mol. Biol. 11, 371–379 (2004).

    Article  CAS  Google Scholar 

  44. Joachimiak, L.A., Kortemme, T., Stoddard, B.L. & Baker, D. Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein-protein interface. J. Mol. Biol. 361, 195–208 (2006).

    Article  CAS  Google Scholar 

  45. Mandell, D.J. & Kortemme, T. Computer-aided design of functional protein interactions. Nat. Chem. Biol. 5, 797–807 (2009).

    Article  CAS  Google Scholar 

  46. Levin, K.B. et al. Following evolutionary paths to protein-protein interactions with high affinity and selectivity. Nat. Struct. Mol. Biol. 16, 1049–1055 (2009).

    Article  CAS  Google Scholar 

  47. Li, W. et al. Highly discriminating protein-protein interaction specificities in the context of a conserved binding energy hotspot. J. Mol. Biol. 337, 743–759 (2004).

    Article  CAS  Google Scholar 

  48. Lippow, S.M., Wittrup, K.D. & Tidor, B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat. Biotechnol. 25, 1171–1176 (2007).

    Article  CAS  Google Scholar 

  49. Skerker, J.M. et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008).

    Article  CAS  Google Scholar 

  50. Grigoryan, G., Reinke, A.W. & Keating, A.E. Design of protein-interaction specificity gives selective bZIP-binding peptides. Nature 458, 859–864 (2009).

    Article  CAS  Google Scholar 

  51. Karanicolas, J. & Kuhlman, B. Computational design of affinity and specificity at protein-protein interfaces. Curr. Opin. Struct. Biol. 19, 458–463 (2009).

    Article  CAS  Google Scholar 

  52. Edwards, A. Large-scale structural biology of the human proteome. Annu. Rev. Biochem. 78, 541–568 (2009).

    Article  CAS  Google Scholar 

  53. Doudeva, L.G. et al. Crystal structural analysis and metal-dependent stability and activity studies of the ColE7 endonuclease domain in complex with DNA/Zn2+ or inhibitor/Ni2+. Protein Sci. 15, 269–280 (2006).

    Article  CAS  Google Scholar 

  54. Ko, T.P., Liao, C.C., Ku, W.Y., Chak, K.F. & Yuan, H.S. The crystal structure of the DNase domain of colicin E7 in complex with its inhibitor Im7 protein. Structure 7, 91–102 (1999).

    Article  CAS  Google Scholar 

  55. Huang, H. & Yuan, H.S. The conserved asparagine in the HNH motif serves an important structural role in metal finger endonucleases. J. Mol. Biol. 368, 812–821 (2007).

    Article  CAS  Google Scholar 

  56. Petrey, D. et al. Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling. Proteins 53 (Suppl. 6) 430–435 (2003).

    Article  CAS  Google Scholar 

  57. Xiang, Z. & Honig, B. Extending the accuracy limits of prediction for side-chain conformations. J. Mol. Biol. 311, 421–430 (2001).

    Article  CAS  Google Scholar 

  58. MacKerell, A.D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  Google Scholar 

  59. Honig, B. & Nicholls, A. Classical electrostatics in biology and chemistry. Science 268, 1144–1149 (1995).

    Article  CAS  Google Scholar 

  60. Sridharan, S., Nicholls, A. & Honig, B. A new vertex algorithm to calculate solvent accessible surface areas. FASEB J. 6, A174 (1992).

    Google Scholar 

Download references

Acknowledgements

This research was supported by US National Institutes of Health grants EY012859 (V.Y.A.) and GM082892 (D.P.S.), by a core grant for vision research to Duke University (EY5722), by the US National Science Foundation through TeraGrid resources (TG-MCB080085T; M.K.) and by a long-term postdoctoral fellowship from the Human Frontier Science Program (M.K.). We thank the Duke Shared Cluster Resource and the San Diego Supercomputer Center for computational resources, S.A. Baker, S. Farsiu, N.P. Skiba, E.S. Lobanova and D. Reichmann for helpful suggestions, B. Honig for insightful guidance (M.K.) and F. Sheinerman, R. Rohs, S. Fleishman and E. Alexov for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.K. designed and carried out computational analysis and biochemical experiments, analyzed data and prepared the manuscript, A.M.T. carried out experiments and prepared the manuscript, D.E.B. carried out experiments and prepared the manuscript, D.P.S. supervised the project and prepared the manuscript and V.Y.A. supervised the project and analysis and prepared the manuscript.

Corresponding author

Correspondence to Vadim Y Arshavsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 620 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosloff, M., Travis, A., Bosch, D. et al. Integrating energy calculations with functional assays to decipher the specificity of G protein–RGS protein interactions. Nat Struct Mol Biol 18, 846–853 (2011). https://doi.org/10.1038/nsmb.2068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing