Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recognition of the F&H motif by the Lowe syndrome protein OCRL

Abstract

Lowe syndrome and type 2 Dent disease are caused by defects in the inositol 5-phosphatase OCRL. Most missense mutations in the OCRL ASH-RhoGAP domain that are found in affected individuals abolish interactions with the endocytic adaptors APPL1 and Ses (both Ses1 and Ses2), which bind OCRL through a short phenylalanine and histidine (F&H) motif. Using X-ray crystallography, we have identified the F&H motif binding site on the RhoGAP domain of OCRL. Missense mutations associated with disease affected F&H binding indirectly by destabilizing the RhoGAP fold. By contrast, a disease-associated mutation that does not perturb F&H binding and ASH-RhoGAP stability disrupted the interaction of OCRL with Rab5. The F&H binding site of OCRL is conserved even in species that do not have an identified homolog for APPL or Ses. Our study predicts the existence of other OCRL binding partners and shows that the perturbation of OCRL interactions has a crucial role in disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structures of INPP5B and OCRL and their F&H motif–containing interactors, and the crystal structure of the human ASH-RhoGAP domain in complex with the F&H peptide from human Ses1.
Figure 2: Mutation of the F&H binding site in OCRL disrupts its colocalization with proteins that contain F&H motifs.
Figure 3: Conserved surfaces of the ASH-RhoGAP domain map to the F&H-interaction and potential Rab-interaction surfaces.
Figure 4: Disease-causing mutations that affect F&H binding are global folding mutations.
Figure 5: Characterization of a mutation that impairs binding of Rab5.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Attree, O. et al. The Lowe's oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358, 239–242 (1992).

    Article  CAS  Google Scholar 

  2. Hoopes, R.R.J. et al. Dent disease with mutations in OCRL1. Am. J. Hum. Genet. 76, 260–267 (2005).

    Article  CAS  Google Scholar 

  3. Bockenhauer, D. et al. Renal phenotype in Lowe syndrome: a selective proximal tubular dysfunction. Clin. J. Am. Soc. Nephrol. 3, 1430–1436 (2008).

    Article  Google Scholar 

  4. Delleman, J.W., Bleeker-Wagemakers, E.M. & van Veelen, A.W. Opacities of the lens indicating carrier status in the oculo-cerebro-renal (Lowe) syndrome. J. Pediatr. Ophthalmol. 14, 205–212 (1977).

    CAS  PubMed  Google Scholar 

  5. Kenworthy, L. & Charnas, L. Evidence for a discrete behavioral phenotype in the oculocerebrorenal syndrome of Lowe. Am. J. Med. Genet. 59, 283–290 (1995).

    Article  CAS  Google Scholar 

  6. Schurman, S.J. & Scheinman, S.J. Inherited cerebrorenal syndromes. Nat. Rev. Nephrol. 5, 529–538 (2009).

    Article  Google Scholar 

  7. Bökenkamp, A. et al. Dent-2 disease: a mild variant of Lowe syndrome. J. Pediatr. 155, 94–99 (2009).

    Article  Google Scholar 

  8. Shrimpton, A.E. et al. OCRL1 mutations in Dent 2 patients suggest a mechanism for phenotypic variability. Nephron Physiol. 112, 27–36 (2009).

    Article  Google Scholar 

  9. Bothwell, S.P., Farber, L.W., Hoagland, A. & Nussbaum, R.L. Species-specific difference in expression and splice-site choice in Inpp5b, an inositol polyphosphate 5-phosphatase paralogous to the enzyme deficient in Lowe syndrome. Mamm. Genome 21, 458–466 (2010).

    Article  CAS  Google Scholar 

  10. Jänne, P.A. et al. Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J. Clin. Invest. 101, 2042–2053 (1998).

    Article  Google Scholar 

  11. Dressman, M.A., Olivos-Glander, I.M., Nussbaum, R.L. & Suchy, S.F. Ocrl1, a PtdIns(4,5)P(2) 5-phosphatase, is localized to the trans-Golgi network of fibroblasts and epithelial cells. J. Histochem. Cytochem. 48, 179–190 (2000).

    Article  CAS  Google Scholar 

  12. Olivos-Glander, I.M., Janne, P.A. & Nussbaum, R.L. The oculocerebrorenal syndrome gene product is a 105-kD protein localized to the Golgi complex. Am. J. Hum. Genet. 57, 817–823 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Suchy, S.F., Olivos-Glander, I.M. & Nussabaum, R.L. Lowe syndrome, a deficiency of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in the Golgi apparatus. Hum. Mol. Genet. 4, 2245–2250 (1995).

    Article  CAS  Google Scholar 

  14. Erdmann, K.S. et al. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev. Cell 13, 377–390 (2007).

    Article  CAS  Google Scholar 

  15. Mao, Y. et al. A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism. EMBO J. 28, 1831–1842 (2009).

    Article  CAS  Google Scholar 

  16. Ungewickell, A., Ward, M.E., Ungewickell, E. & Majerus, P.W. The inositol polyphosphate 5-phosphatase Ocrl associates with endosomes that are partially coated with clathrin. Proc. Natl. Acad. Sci. USA 101, 13501–13506 (2004).

    Article  CAS  Google Scholar 

  17. Faucherre, A. et al. Lowe syndrome protein OCRL1 interacts with Rac GTPase in the trans-Golgi network. Hum. Mol. Genet. 12, 2449–2456 (2003).

    Article  CAS  Google Scholar 

  18. Fukuda, M., Kanno, E., Ishibashi, K. & Itoh, T. Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity. Mol. Cell. Proteomics 7, 1031–1042 (2008).

    Article  CAS  Google Scholar 

  19. Hyvola, N. et al. Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases. EMBO J. 25, 3750–3761 (2006).

    Article  CAS  Google Scholar 

  20. Swan, L.E., Tomasini, L., Pirruccello, M., Lunardi, J. & de Camilli, P. Two closely related endocytic proteins that share a common OCRL-binding motif with APPL1. Proc. Natl. Acad. Sci. USA 107, 3511–3516 (2010).

    Article  CAS  Google Scholar 

  21. Noakes, C.J., Lee, G. & Lowe, M. The PH domain proteins IPIP27A and B link OCRL1 to receptor recycling in the endocytic pathway. Mol. Cell. Biol. 22, 606–623 (2011).

    Article  CAS  Google Scholar 

  22. Zoncu, R. et al. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136, 1110–1121 (2009).

    Article  CAS  Google Scholar 

  23. Miaczynska, M. et al. APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. Cell 116, 445–456 (2004).

    Article  CAS  Google Scholar 

  24. National Human Genome Research Institute. Database of the OCRL1 Mutations Causing Lowe Syndrome (National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 2010). <http://research.nhgri.nih.gov/lowe/>.

  25. Monnier, N., Satre, V., Lerouge, E., Berthoin, F. & Lunardi, J. OCRL1 mutation analysis in French Lowe syndrome patients: implications for molecular diagnosis strategy and genetic counseling. Hum. Mutat. 16, 157–165 (2000).

    Article  CAS  Google Scholar 

  26. Addis, M., Loi, M., Lepiani, C., Cau, M. & Melis, M.A. OCRL mutation analysis in Italian patients with Lowe syndrome. Hum. Mutat. 23, 524–525 (2004).

    Article  Google Scholar 

  27. McCrea, H.J. et al. All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding. Biochem. Biophys. Res. Commun. 369, 493–499 (2008).

    Article  CAS  Google Scholar 

  28. Hichri, H. et al. From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum. Mutat. 32, 379–388 (2010).

    Article  Google Scholar 

  29. Yuksel, A., Karaca, E. & Albayram, M.S. Magnetic resonance imaging, magnetic resonance spectroscopy, and facial dysmorphism in a case of Lowe syndrome with novel OCRL1 gene mutation. J. Child Neurol. 24, 93–96 (2009).

    Article  Google Scholar 

  30. Tosetto, E. et al. Locus heterogeneity of Dent's disease: OCRL1 and TMEM27 genes in patients with no CLCN5 mutations. Pediatr. Nephrol. 24, 1967–1973 (2009).

    Article  Google Scholar 

  31. Kawano, T., Indo, Y., Nakazato, H., Shimadzu, M. & Matsuda, I. Oculocerebrorenal syndrome of Lowe: three mutations in the OCRL1 gene derived from three patients with different phenotypes. Am. J. Med. Genet. 77, 348–355 (1998).

    Article  CAS  Google Scholar 

  32. Lichter-Konecki, U., Farber, L.W., Cronin, J.S., Suchy, S.F. & Nussbaum, R.L. The effect of missense mutations in the RhoGAP-homology domain on ocrl1 function. Mol. Genet. Metab. 89, 121–128 (2006).

    Article  CAS  Google Scholar 

  33. Lin, T. et al. Spectrum of mutations in the OCRL1 gene in the Lowe oculocerebrorenal syndrome. Am. J. Hum. Genet. 60, 1384–1388 (1997).

    Article  CAS  Google Scholar 

  34. Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38 (Suppl.), W545–W549 (2010).

    Article  CAS  Google Scholar 

  35. Kaiser, S.E. et al. Structural basis of FFAT motif-mediated ER targeting. Structure 13, 1035–1045 (2005).

    Article  CAS  Google Scholar 

  36. Gant-Branum, R.L., Broussard, J.A., Mahsut, A., Webb, D.J. & McLean, J.A. Identification of phosphorylation sites within the signaling adaptor APPL1 by mass spectrometry. J. Proteome Res. 9, 1541–1548 (2010).

    Article  CAS  Google Scholar 

  37. Wenk, M.R. et al. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat. Biotechnol. 21, 813–817 (2003).

    Article  CAS  Google Scholar 

  38. Zhu, G. et al. Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5. EMBO J. 26, 3484–3493 (2007).

    Article  CAS  Google Scholar 

  39. Ponting, C.P. A novel domain suggests a ciliary function for ASPM, a brain size determining gene. Bioinformatics 22, 1031–1035 (2006).

    Article  CAS  Google Scholar 

  40. Nassar, N., Hoffman, G.R., Manor, D., Clardy, J.C. & Cerione, R.A. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nat. Struct. Biol. 5, 1047–1052 (1998).

    Article  CAS  Google Scholar 

  41. Hou, X. et al. A structural basis for Lowe syndrome caused by mutations in the Rab-binding domain of OCRL1. EMBO J. 30, 1659–1670 (2011).

    Article  CAS  Google Scholar 

  42. Deprez, C. et al. Solution structure of the E. coli TolA C-terminal domain reveals conformational changes upon binding to the phage g3p N-terminal domain. J. Mol. Biol. 346, 1047–1057 (2005).

    Article  CAS  Google Scholar 

  43. Painter, J. & Merritt, E.A. TLSMDweb server for the generation of multi-group TLS models. J. Appl. Cryst. 39, 109–111 (2006).

    Article  CAS  Google Scholar 

  44. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  Google Scholar 

  45. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  46. Christoforidis, S. & Zerial, M. Purification and identification of novel Rab effectors using affinity chromatography. Methods 20, 403–410 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Murphy (Yale School of Medicine Macromolecular Crystallography Facility) and K. Reinisch for advice and assistance; the Yale School of Medicine W.M. Keck small-scale peptide synthesis facility for peptide synthesis; M. Stagi for computational support; and D. Balkin and H. Sondermann for discussion. This work has been supported by the following funding sources: Browne-Cox postdoctoral fellowship (M.P.), US National Institutes of Health DK45735 and DK082700 (P.D.C.), DA018343 (E.F.-S. and P.D.C.), and grants from the Lowe Syndrome Association (P.D.C.) and the Lowe Syndrome Trust (P.D.C. and L.S.). The Biacore T100 instrumentation, and the size exclusion chromatography and light scattering instrumentation (SEC/LS system), were supported by US National Institutes of Health grants 1S10RR026992 and 1S10RR023748, respectively.

Author information

Authors and Affiliations

Authors

Contributions

M.P., L.E.S. and P.D.C. designed research; M.P., L.E.S. and E.F.-S. conducted experiments and contributed new reagents or analytical tools; M.P., L.E.S. and P.D.C. analyzed data; M.P. and P.D.C. wrote the paper.

Corresponding author

Correspondence to Pietro De Camilli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 5679 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirruccello, M., Swan, L., Folta-Stogniew, E. et al. Recognition of the F&H motif by the Lowe syndrome protein OCRL. Nat Struct Mol Biol 18, 789–795 (2011). https://doi.org/10.1038/nsmb.2071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2071

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing