Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recognition of the pre-miRNA structure by Drosophila Dicer-1

Abstract

Drosophila melanogaster has two Dicer proteins with specialized functions. Dicer-1 liberates miRNA-miRNA* duplexes from precursor miRNAs (pre-miRNAs), whereas Dicer-2 processes long double-stranded RNAs into small interfering RNA duplexes. It was recently demonstrated that Dicer-2 is rendered highly specific for long double-stranded RNA substrates by inorganic phosphate and a partner protein R2D2. However, it remains unclear how Dicer-1 exclusively recognize pre-miRNAs. Here we show that fly Dicer-1 recognizes the single-stranded terminal loop structure of pre-miRNAs through its N-terminal helicase domain, checks the loop size and measures the distance between the 3′ overhang and the terminal loop. This unique mechanism allows fly Dicer-1 to strictly inspect the authenticity of pre-miRNA structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dcr-1 recognizes the terminal single-stranded region of pre-miRNAs.
Figure 2: Dcr-1 measures the distance from the 3′ overhang to the terminal single-stranded region of pre-miRNAs.
Figure 3: Dcr-1 recognizes the terminal single-stranded region of pre-miRNAs through its helicase domain.
Figure 4: A proposed model for recognition of authentic pre-miRNA structures by Dcr-1.

Similar content being viewed by others

References

  1. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  2. Kim, V.N., Han, J. & Siomi, M.C. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126–139 (2009).

    Article  CAS  Google Scholar 

  3. Förstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236 (2005).

    Article  Google Scholar 

  4. Saito, K., Ishizuka, A., Siomi, H. & Siomi, M.C. Processing of pre-microRNAs by the Dicer-1–Loquacious complex in Drosophila cells. PLoS Biol. 3, e235 (2005).

    Article  Google Scholar 

  5. Jiang, F. et al. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19, 1674–1679 (2005).

    Article  CAS  Google Scholar 

  6. Chendrimada, T.P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  Google Scholar 

  7. Haase, A.D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967 (2005).

    Article  CAS  Google Scholar 

  8. Lee, Y. et al. The role of PACT in the RNA silencing pathway. EMBO J. 25, 522–532 (2006).

    Article  CAS  Google Scholar 

  9. Kok, K.H., Ng, M.H., Ching, Y.P. & Jin, D.Y. Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J. Biol. Chem. 282, 17649–17657 (2007).

    Article  CAS  Google Scholar 

  10. Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R. & Hannon, G.J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    Article  CAS  Google Scholar 

  11. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M.C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).

    Article  CAS  Google Scholar 

  12. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  Google Scholar 

  13. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  Google Scholar 

  14. Iwasaki, S. et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol. Cell 39, 292–299 (2010).

    Article  CAS  Google Scholar 

  15. Iki, T. et al. In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol. Cell 39, 282–291 (2010).

    Article  CAS  Google Scholar 

  16. Miyoshi, T., Takeuchi, A., Siomi, H. & Siomi, M.C. A direct role for Hsp90 in pre-RISC formation in Drosophila. Nat. Struct. Mol. Biol. 17, 1024–1026 (2010).

    CAS  Google Scholar 

  17. Kawamata, T., Seitz, H. & Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat. Struct. Mol. Biol. 16, 953–960 (2009).

    Article  CAS  Google Scholar 

  18. Yoda, M. et al. ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol. 17, 17–23 (2010).

    Article  CAS  Google Scholar 

  19. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003).

    Article  CAS  Google Scholar 

  20. Pham, J.W., Pellino, J.L., Lee, Y.S., Carthew, R.W. & Sontheimer, E.J.A. Dicer-2-dependent 80S complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117, 83–94 (2004).

    Article  CAS  Google Scholar 

  21. Tomari, Y. et al. RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116, 831–841 (2004).

    Article  CAS  Google Scholar 

  22. Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. & Zamore, P.D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607–620 (2005).

    Article  CAS  Google Scholar 

  23. Rand, T.A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621–629 (2005).

    Article  CAS  Google Scholar 

  24. Leuschner, P.J., Ameres, S.L., Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 7, 314–320 (2006).

    Article  CAS  Google Scholar 

  25. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M.C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848 (2005).

    Article  CAS  Google Scholar 

  26. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  27. Zhang, H., Kolb, F.A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).

    Article  CAS  Google Scholar 

  28. Provost, P. et al. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 21, 5864–5874 (2002).

    Article  CAS  Google Scholar 

  29. Lee, Y.S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    Article  CAS  Google Scholar 

  30. Cenik, E.S. et al. Phosphate and R2D2 Restrict the Substrate Specificity of Dicer-2, an ATP-Driven Ribonuclease. Mol. Cell 42, 172–184 (2011).

    Article  CAS  Google Scholar 

  31. Ye, X., Paroo, Z. & Liu, Q. Functional anatomy of the Drosophila microRNA-generating enzyme. J. Biol. Chem. 282, 28373–28378 (2007).

    Article  CAS  Google Scholar 

  32. Ma, J.B., Ye, K. & Patel, D.J. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322 (2004).

    Article  CAS  Google Scholar 

  33. Macrae, I.J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006).

    Article  CAS  Google Scholar 

  34. Fairman-Williams, M.E., Guenther, U.P. & Jankowsky, E. SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 20, 313–324 (2010).

    Article  CAS  Google Scholar 

  35. Jankowsky, E. RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36, 19–29 (2011).

    Article  CAS  Google Scholar 

  36. Linder, P. Dead-box proteins: a family affair—active and passive players in RNP-remodeling. Nucleic Acids Res. 34, 4168–4180 (2006).

    Article  CAS  Google Scholar 

  37. Hilbert, M., Karow, A.R. & Klostermeier, D. The mechanism of ATP-dependent RNA unwinding by DEAD box proteins. Biol. Chem. 390, 1237–1250 (2009).

    Article  CAS  Google Scholar 

  38. Welker, N.C. et al. Dicer's helicase domain discriminates dsRNA termini to promote an altered reaction mode. Mol. Cell 41, 589–599 (2011).

    Article  CAS  Google Scholar 

  39. Wang, H.W. et al. Structural insights into RNA processing by the human RISC-loading complex. Nat. Struct. Mol. Biol. 16, 1148–1153 (2009).

    Article  CAS  Google Scholar 

  40. Lau, P.W., Potter, C.S., Carragher, B. & MacRae, I.J. Structure of the human Dicer-TRBP complex by electron microscopy. Structure 17, 1326–1332 (2009).

    Article  CAS  Google Scholar 

  41. Nykänen, A., Haley, B. & Zamore, P.D. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107, 309–321 (2001).

    Article  Google Scholar 

  42. Welker, N.C. et al. Dicer's helicase domain is required for accumulation of some, but not all, C. elegans endogenous siRNAs. RNA 16, 893–903 (2010).

    Article  CAS  Google Scholar 

  43. Mateos, J.L., Bologna, N.G., Chorostecki, U. & Palatnik, J.F. Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr. Biol. 20, 49–54 (2010).

    Article  CAS  Google Scholar 

  44. Song, L., Axtell, M.J. & Fedoroff, N.V. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr. Biol. 20, 37–41 (2010).

    Article  CAS  Google Scholar 

  45. Werner, S., Wollmann, H., Schneeberger, K. & Weigel, D. Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr. Biol. 20, 42–48 (2010).

    Article  CAS  Google Scholar 

  46. Bologna, N.G., Mateos, J.L., Bresso, E.G. & Palatnik, J.F. A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J. 28, 3646–3656 (2009).

    Article  CAS  Google Scholar 

  47. Dong, Z., Han, M.H. & Fedoroff, N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc. Natl. Acad. Sci. USA 105, 9970–9975 (2008).

    Article  CAS  Google Scholar 

  48. Ma, E., MacRae, I.J., Kirsch, J.F. & Doudna, J.A. Autoinhibition of human dicer by its internal helicase domain. J. Mol. Biol. 380, 237–243 (2008).

    Article  CAS  Google Scholar 

  49. Soifer, H.S. et al. A role for the Dicer helicase domain in the processing of thermodynamically unstable hairpin RNAs. Nucleic Acids Res. 36, 6511–6522 (2008).

    Article  CAS  Google Scholar 

  50. Myong, S. et al. Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA. Science 323, 1070–1074 (2009).

    Article  CAS  Google Scholar 

  51. Tomari, Y., Du, T. & Zamore, P.D. Sorting of Drosophila small silencing RNAs. Cell 130, 299–308 (2007).

    Article  CAS  Google Scholar 

  52. Förstemann, K., Horwich, M.D., Wee, L., Tomari, Y. & Zamore, P.D. Drosophila microRNAs are sorted into functionally distinct Argonaute complexes after production by Dicer-1. Cell 130, 287–297 (2007).

    Article  Google Scholar 

  53. Iwasaki, S., Kawamata, T. & Tomari, Y. Drosophila Argonaute1 and Argonaute2 use distinct mechanisms for translational repression. Mol. Cell 34, 58–67 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Q. Liu (University of Texas Southwestern Medical Center) for the pFastBac-His-Dcr-1 wild type and E1908A E2139A plasmids, to M. Siomi and H. Siomi (Keio University) for the plasmid for expressing Loqs-PB, and to S. Katsuma for his advice on protein expression. We thank P. Bas Kwak for assistance with the amino acid sequence alignment, and we thank K. Förstemann and members of the Tomari laboratory for discussions, suggestions and critical comments on the manuscript. This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas ('Functional machinery for noncoding RNAs') and a a Grant-in-Aid for Young Scientists from the Japan Ministry of Education, Culture, Sports, Science and Technology to Y.T.; and a Carrier Development Award from The International Human Frontier Science Program Organization to Y.T. N.I. is a recipient of a Research Fellowship from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

A.T. conducted biochemical experiments with the assistance of T.K. and N.I., H.S. conducted bioinformatic analyses, Y.T. supervised the study; A.T. and Y.T. wrote the manuscript, and all authors discussed the results and approved the manuscript.

Corresponding author

Correspondence to Yukihide Tomari.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1651 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsutsumi, A., Kawamata, T., Izumi, N. et al. Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat Struct Mol Biol 18, 1153–1158 (2011). https://doi.org/10.1038/nsmb.2125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing