Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Competition between ADAR and RNAi pathways for an extensive class of RNA targets

Abstract

Adenosine deaminases that act on RNAs (ADARs) interact with double-stranded RNAs, deaminating adenosines to inosines. Previous studies of Caenorhabditis elegans indicated an antagonistic interaction between ADAR and RNAi machineries, with ADAR defects suppressed upon additional knockout of RNAi. This suggests a pool of common RNA substrates capable of engaging both pathways. To define and characterize such substrates, we examined small RNA and mRNA populations of ADAR mutants and identified a distinct set of loci from which RNAi-dependent short RNAs are markedly upregulated. At these same loci, we observed populations of multiply edited transcripts, supporting a specific role for ADARs in preventing access to the RNAi pathway for an extensive population of dsRNAs. Characterization of these loci revealed a substantial overlap with noncoding and intergenic regions, suggesting that the landscape of ADAR targets may extend beyond previously annotated classes of transcripts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diverse consequences of dsRNA formation.
Figure 2: Small RNA accumulation at the F07B7 histone locus in the absence of ADAR activity.
Figure 3: Characteristics of ADAR-modulated RNA loci.
Figure 4: Dependence of ARL small RNAs on the RNAi machinery.
Figure 5: A substantial class of additional ARL-associated siRNAs are evident in 5′ phosphate–independent capture and sequencing.
Figure 6: Accumulation of a second population of siRNAs in cis to ARLs.
Figure 7: A-to-G changes in mRNA show unique enrichment for ARL, inverted repeat and transposon regions.

Similar content being viewed by others

References

  1. Werry, T.D., Loiacono, R., Sexton, P.M. & Christopoulos, A. RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function. Pharmacol. Ther. 119, 7–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Nicholas, A. et al. Age-related gene-specific changes of A-to-I mRNA editing in the human brain. Mech. Ageing Dev. 131, 445–447 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burns, C.M. et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Rula, E.Y. & Emeson, R.B. Mouse models to elucidate the functional roles of adenosine-to-inosine editing. Methods Enzymol. 424, 333–367 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Osenberg, S. et al. Alu sequences in undifferentiated human embryonic stem cells display high levels of A-to-I RNA editing. PLoS ONE 5, e11173 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li, J.B. et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324, 1210–1213 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Levanon, K., Eisenberg, E., Rechavi, G. & Levanon, E.Y. Letter from the editor: Adenosine-to-inosine RNA editing in Alu repeats in the human genome. EMBO Rep. 6, 831–835 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levanon, E.Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Barak, M. et al. Evidence for large diversity in the human transcriptome created by Alu RNA editing. Nucleic Acids Res. 37, 6905–6915 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blow, M., Futreal, P.A., Wooster, R. & Stratton, M.R. A survey of RNA editing in human brain. Genome Res. 14, 2379–2387 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, D.D.Y. et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paz-Yaacov, N. et al. Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc. Natl. Acad. Sci. USA 107, 12174–12179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. St. Laurent, G., Savva, Y.A. & Reenan, R. Enhancing non-coding RNA information content with ADAR editing. Neurosci. Lett. 466, 89–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Kleinberger, Y. & Eisenberg, E. Large-scale analysis of structural, sequence and thermodynamic characteristics of A-to-I RNA editing sites in human Alu repeats. BMC Genomics 11, 453 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lehmann, K.A. & Bass, B.L. Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. Biochemistry 39, 12875–12884 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Zinshteyn, B. & Nishikura, K. Adenosine-to-inosine RNA editing. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 202–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, L.L. & Carmichael, G.G. Gene regulation by SINES and inosines: biological consequences of A-to-I editing of Alu element inverted repeats. Cell Cycle 7, 3294–3301 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. DeCerbo, J. & Carmichael, G.G. Retention and repression: fates of hyperedited RNAs in the nucleus. Curr. Opin. Cell Biol. 17, 302–308 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Desterro, J.M.P. et al. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 116, 1805–1818 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Scadden, D. NEAT way of regulating nuclear export of mRNAs. Mol. Cell 35, 395–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Scadden, A.D.J. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat. Struct. Mol. Biol. 12, 489–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Scadden, A.D.J. Inosine-containing dsRNA binds a stress-granule-like complex and downregulates gene expression in trans. Mol. Cell 28, 491–500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hundley, H.A., Krauchuk, A.A. & Bass, B.L. C. elegans and H. sapiens mRNAs with edited 3′ UTRs are present on polysomes. RNA 14, 2050–2060 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jin, Y., Zhang, W. & Li, Q. Origins and evolution of ADAR-mediated RNA editing. IUBMB Life 61, 572–578 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Hartner, J.C., Walkley, C.R., Lu, J. & Orkin, S.H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 10, 109–115 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, Q., Khillan, J., Gadue, P. & Nishikura, K. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290, 1765–1768 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Q. et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 279, 4952–4961 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Hartner, J.C. et al. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 279, 4894–4902 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Jepson, J.E. & Reenan, R.A. Unraveling pleiotropic functions of A-To-I RNA editing in Drosophila. Fly (Austin) 4, 154–158 (2010).

    Article  CAS  Google Scholar 

  32. Jepson, J.E.C. & Reenan, R.A. Adenosine-to-inosine genetic recoding is required in the adult stage nervous system for coordinated behavior in Drosophila. J. Biol. Chem. 284, 31391–31400 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tonkin, L.A. et al. RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J. 21, 6025–6035 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sebastiani, P. et al. RNA editing genes associated with extreme old age in humans and with lifespan in C. elegans. PLoS ONE 4, e8210 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Knight, S.W. & Bass, B.L. The role of RNA editing by ADARs in RNAi. Mol. Cell 10, 809–817 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Tonkin, L.A. & Bass, B.L. Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302, 1725 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heale, B.S., Keegan, L.P. & O'Connell, M.A. ADARs have effects beyond RNA editing. Cell Cycle 8, 4011–4012 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, W. et al. ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. J. Biol. Chem. 280, 3946–3953 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Heale, B.S.E. et al. Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J. 28, 3145–3156 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ensterö, M., Daniel, C., Wahlstedt, H., Major, F.C. & Ohman, M. Recognition and coupling of A-to-I edited sites are determined by the tertiary structure of the RNA. Nucleic Acids Res. 37, 6916–6926 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wulff, B.E., Sakurai, M. & Nishikura, K. Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing. Nat. Rev. Genet. 12, 81–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Hundley, H.A. & Bass, B.L. ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem. Sci. 35, 377–383 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gent, J.I. et al. Distinct phases of siRNA synthesis in an endogenous RNAi pathway in C. elegans soma. Mol. Cell 37, 679–689 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Tabara, H., Yigit, E., Siomi, H. & Mello, C.C. The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109, 861–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Parker, G.S., Eckert, D.M. & Bass, B.L. RDE-4 preferentially binds long dsRNA and its dimerization is necessary for cleavage of dsRNA to siRNA. RNA 12, 807–818 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steiner, F.A., Okihara, K.L., Hoogstrate, S.W., Sijen, T. & Ketting, R.F. RDE-1 slicer activity is required only for passenger-strand cleavage during RNAi in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 16, 207–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Pare, J.M. & Hobman, T.C. Dicer: structure, function and role in RNA-dependent gene-silencing pathways. in Industrial Enzymes. (eds. Polaina, J. and MacCabe, A.P.) Ch. 24, 421–438 (Springer Netherlands, Dordrecht, 2007).

    Chapter  Google Scholar 

  50. Nicholson, A.W. Structure, reactivity, and biology of double-stranded RNA. Prog. Nucleic Acid Res. Mol. Biol. 52, 1–65 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Pak, J. & Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 315, 241–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Xi, Y. & Li, W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10, 232 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li, H. & Homer, N. A survey of sequence alignment algorithms for next-generation sequencing. Brief. Bioinform. 11, 473–483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465–476 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Alder, M.N., Dames, S., Gaudet, J. & Mango, S.E. Gene silencing in Caenorhabditis elegans by transitive RNA interference. RNA 9, 25–32 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lamm, A.T., Stadler, M.R., Zhang, H., Gent, J.I. & Fire, A.Z. Multimodal RNA-seq using single-strand, double-strand, and CircLigase-based capture yields a refined and extended description of the C. elegans transcriptome. Genome Res. 21, 265–275 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ewing, B. & Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Robinson, J.T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Gent, S. Gu, M. Stadler, H. Zhang, K. Artiles, J. Pak, L. Gracey, A. Sidow, Z. Weng, P. Lacroute and P. Parameswaran for help and suggestions; the Caenorhabditis Genetics Center, National Bioresource Project and B. Bass (University of Utah) for strains; Stanford Graduate Fellowship (D.W.), Stanford Dean's Fellowship and Machiah Foundation (A.T.L.); and the US National Institutes of Health (R01GM37706 to A.Z.F.) for support.

Author information

Authors and Affiliations

Authors

Contributions

D.W. and A.Z.F. designed experiments and wrote the paper. D.W. prepared samples, created small RNA libraries and analyzed the data. A.T.L. created mRNA libraries and participated in discussions.

Corresponding author

Correspondence to Andrew Z Fire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 6558 kb)

Supplementary Data 1

Sample description (XLS 29 kb)

Supplementary Data 2

ADAR-affected sRNA expression over ARLs (XLS 116 kb)

Supplementary Data 3

Annotation enrichment of ARLs (XLS 24 kb)

Supplementary Data 4

Secondary siRNA expression for all genes (XLS 633 kb)

Supplementary Data 5

Genome-wide annotation of putative A-to-I editing (XLS 559 kb)

Supplementary Data 6

Statistics and raw data from Sanger sequencing (XLSX 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D., Lamm, A. & Fire, A. Competition between ADAR and RNAi pathways for an extensive class of RNA targets. Nat Struct Mol Biol 18, 1094–1101 (2011). https://doi.org/10.1038/nsmb.2129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing