Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Chp1–Tas3 core is a multifunctional platform critical for gene silencing by RITS

Abstract

RNA interference (RNAi) is critical for the assembly of heterochromatin at Schizosaccharomyces pombe centromeres. Central to this process is the RNA-induced initiation of transcriptional gene silencing (RITS) complex, which physically anchors small noncoding RNAs to chromatin. RITS includes Ago1, the chromodomain protein Chp1, and Tas3, which forms a bridge between Chp1 and Ago1. Chp1 is a large protein with no recognizable domains, apart from its chromodomain. Here we describe how the structured C-terminal half of Chp1 binds the Tas3 N-terminal domain, revealing the tight association of Chp1 and Tas3. The structure also shows a PIN domain at the C-terminal tip of Chp1 that controls subtelomeric transcripts through a post-transcriptional mechanism. We suggest that the Chp1–Tas3 complex provides a solid and versatile platform to recruit both RNAi-dependent and RNAi-independent gene-silencing pathways for locus-specific regulation of heterochromatin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Chp1–Tas3 complex.
Figure 2: The Chp1 PIN domain.
Figure 3: The Chp1 PIN domain regulates subtelomeric, but not centromeric, transcript accumulation.
Figure 4: The Chp1 PIN domain promotes post-transcriptional regulation of tlh transcripts.
Figure 5: Family of Chp1 proteins.
Figure 6: Context-specific functions of RITS subunits at centromeres and subtelomeres.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature 457, 413–420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Volpe, T. & Martienssen, R.A. RNA interference and heterochromatin assembly. Cold Spring Harb. Perspect. Biol. 3, a003731 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Volpe, T.A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Sugiyama, T., Cam, H., Verdel, A., Moazed, D. & Grewal, S.I.S. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc. Natl. Acad. Sci. USA 102, 152–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Bühler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    Article  PubMed  Google Scholar 

  6. Bühler, M., Haas, W., Gygi, S.P. & Moazed, D. RNAi-dependent and -independent RNA turnover mechanisms contribute to heterochromatic gene silencing. Cell 129, 707–721 (2007).

    Article  PubMed  Google Scholar 

  7. Zhang, K., Mosch, K., Fischle, W. & Grewal, S.I.S. Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat. Struct. Mol. Biol. 15, 381–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Bayne, E.H. et al. Stc1: A critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140, 666–677 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gerace, E.L., Halic, M. & Moazed, D. The methyltransferase activity of Clr4Suv39h triggers RNAi independently of histone H3K9 methylation. Mol. Cell 39, 360–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grewal, S.I.S. & Jia, S. Heterochromatin revisited. Nat. Rev. Genet. 8, 35–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Creamer, K.M. & Partridge, J.F. RITS—connecting transcription, RNA interference, and heterochromatin assembly in fission yeast. Wiley Interdiscip Rev RNA. 2, 632–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schalch, T. et al. High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin. Mol. Cell 34, 36–46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Irvine, D.V. et al. Argonaute slicing is required for heterochromatic silencing and spreading. Science 313, 1134–1137 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Buker, S.M. et al. Two different Argonaute complexes are required for siRNA generation and heterochromatin assembly in fission yeast. Nat. Struct. Mol. Biol. 14, 200–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Petrie, V.J., Wuitschick, J.D., Givens, C.D., Kosinski, A.M. & Partridge, J.F. RNA interference (RNAi)-dependent and RNAi-independent association of the Chp1 chromodomain protein with distinct heterochromatic loci in fission yeast. Mol. Cell Biol. 25, 2331–2346 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Partridge, J.F. et al. Functional separation of the requirements for establishment and maintenance of centromeric heterochromatin. Mol. Cell 26, 593–602 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Till, S. et al. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat. Struct. Mol. Biol. 14, 897–903 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. DeBeauchamp, J.L. et al. Chp1-Tas3 interaction is required to recruit RITS to fission yeast centromeres and for maintenance of centromeric heterochromatin. Mol. Cell Biol. 28, 2154–2166 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, H. et al. An alpha motif at Tas3 C terminus mediates RITS cis spreading and promotes heterochromatic gene silencing. Mol. Cell 34, 155–167 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Motamedi, M.R. et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Doe, C.L. et al. The fission yeast chromodomain encoding gene chp1+ is required for chromosome segregation and shows a genetic interaction with alpha-tubulin. Nucleic Acids Res. 26, 4222–4229 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Partridge, J.F., Borgstrom, B. & Allshire, R.C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fitzgerald, D.J. et al. Protein complex expression by using multigene baculoviral vectors. Nat. Methods 3, 1021–1032 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Ariyoshi, M. & Schwabe, J.W.R. A conserved structural motif reveals the essential transcriptional repression function of Spen proteins and their role in developmental signaling. Genes Dev. 17, 1909–1920 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chang, J.-F. et al. Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3. Structure 11, 637–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Clissold, P.M. & Ponting, C.P. PIN domains in nonsense-mediated mRNA decay and RNAi. Curr. Biol. 10, R888–R890 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Lebreton, A., Tomecki, R., Dziembowski, A. & Seraphin, B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456, 993–996 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Bonneau, F., Basquin, J., Ebert, J., Lorentzen, E. & Conti, E. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139, 547–559 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Glavan, F., Behm-Ansmant, I., Izaurralde, E. & Conti, E. Structures of the PIN domains of SMG6 and SMG5 reveal a nuclease within the mRNA surveillance complex. EMBO J. 25, 5117–5125 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hodgkin, J., Papp, A., Pulak, R., Ambros, V. & Anderson, P. A new kind of informational suppression in the nematode Caenorhabditis elegans. Genetics 123, 301–313 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pulak, R. & Anderson, P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 7, 1885–1897 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Gatfield, D., Unterholzner, L., Ciccarelli, F.D., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J. 22, 3960–3970 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reichenbach, P. et al. A human homolog of yeast Est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr. Biol. 13, 568–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Snow, B.E. et al. Functional Conservation of the Telomerase Protein Est1p in Humans. Curr. Biol. 13, 698–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Page, M.F., Carr, B., Anders, K.R., Grimson, A. & Anderson, P. SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. Mol. Cell Biol. 19, 5943–5951 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ohnishi, T. et al. Phosphorylation of hUPF1 induces formation of mRNA surveillance complexes containing hSMG-5 and hSMG-7. Mol. Cell 12, 1187–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Schneider, C., Leung, E., Brown, J. & Tollervey, D. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res. 37, 1127–1140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hansen, K.R., Ibarra, P.T. & Thon, G. Evolutionary-conserved telomere-linked helicase genes of fission yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Taz1. Nucleic Acids Res. 34, 78–88 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sadaie, M., Iida, T., Urano, T. & Nakayama, J. A chromodomain protein, Chp1, is required for the establishment of heterochromatin in fission yeast. EMBO J. 23, 3825–3835 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sugiyama, T. et al. SHREC, an effector complex for heterochromatic transcriptional silencing. Cell 128, 491–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Rehmeyer, C.J., Li, W., Kusaba, M. & Farman, M.L. The telomere-linked helicase (TLH) gene family in Magnaporthe oryzae: revised gene structure reveals a novel TLH-specific protein motif. Curr. Genet. 55, 253–262 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Ashkenazy, H., Erez, E., Martz, E., Pupko, T. & Ben-Tal, N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, W529–W533 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Luft, J.R. & DeTitta, G.T. A method to produce microseed stock for use in the crystallization of biological macromolecules. Acta Crystallogr. D Biol. Crystallogr. 55, 988–993 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pape, T. & Schneider, T.R. HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. J. Appl. Crystallogr. 37, 843–844 (2004).

    Article  CAS  Google Scholar 

  48. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Cowtan, K. 'dm': an automated procedure for phase improvement by density modification. in Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography Vol. 31, 34–38 (Daresbury Laboratory, Warrington, UK, 1994).

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  51. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M. & Barton, G.J. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thon, G. & Verhein-Hansen, J. Four chromo-domain proteins of Schizosaccharomyces pombe differentially repress transcription at various chromosomal locations. Genetics 155, 551–568 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Woods, A. et al. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93, 491–500 (1989).

    PubMed  Google Scholar 

  60. Shanker, S. et al. Continuous requirement for the Clr4 complex but not RNAi for centromeric heterochromatin assembly in fission yeast harboring a disrupted RITS complex. PLoS Genet. 6, e1001174 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Ashar and A. Kosinski for technical support and O. George and B. Lowe for assistance, A. Héroux for help at the National Synchrotron Light Source, which is supported by Department of Energy, Office of Basic Energy Sciences. T.S. was supported by a Human Frontiers in Research Program fellowship. This work was supported by US National Institutes of Health grant R01GM084045, NCI Cancer Center support grant P30CA021765 and the American Lebanese Syrian Associated Charities (to J.F.P.), and the Louis Morin Charitable Trust (to L.J.). L.J. is an investigator of the Howard Hughes Medical Institute. We thank G. Thon, T. Nakamura, R. Martienssen and M. Zaratiegui for helpful discussions, I. Berger (European Molecular Biology Laboratory) and T.J. Richmond (Eidgenössische Technische Hochschule Zürich) for the MultiBac system, G. Thon (University of Copenhagen) and R. Allshire (University of Edinburgh) for strains, and K. Gull (University of Manchester) for the anti-TAT1 antibody.

Author information

Authors and Affiliations

Authors

Contributions

T.S. designed, conducted and interpreted the in vitro structural studies and bioinformatics analyses and wrote the paper. G.J. generated yeast strains and conducted transcript analyses and western blot experiments. S.S. generated yeast strains, analyzed transcripts, westerns and ChIP experiments. J.F.P. generated yeast strains, designed and interpreted experiments and wrote the paper. L.J. designed and interpreted experiments and wrote the paper.

Corresponding authors

Correspondence to Janet F Partridge or Leemor Joshua-Tor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–3 and Supplementary Methods (PDF 4027 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schalch, T., Job, G., Shanker, S. et al. The Chp1–Tas3 core is a multifunctional platform critical for gene silencing by RITS. Nat Struct Mol Biol 18, 1351–1357 (2011). https://doi.org/10.1038/nsmb.2151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing