Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling

Abstract

Members of the novel SH2-containing protein (NSP) and Crk-associated substrate (Cas) protein families form multidomain signaling platforms that mediate cell migration and invasion through a collection of distinct signaling motifs. Members of each family interact via their respective C-terminal domains, but the mechanism of this association has remained enigmatic. Here we present the crystal structures of the C-terminal domain from the NSP protein BCAR3 and the complex of NSP3 with p130Cas. BCAR3 adopts the Cdc25-homology fold of Ras GTPase exchange factors, but it has a 'closed' conformation incapable of enzymatic activity. The structure of the NSP3–p130Cas complex reveals that this closed conformation is instrumental for interaction of NSP proteins with a focal adhesion-targeting domain present in Cas proteins. This enzyme-to-adaptor conversion enables high-affinity, yet promiscuous, interactions between NSP and Cas proteins and represents an unprecedented mechanistic paradigm linking cellular signaling networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The BCAR3 C-terminal domain resembles a Cdc25-homology domain but adopts a closed conformation incapable of canonical GEF function.
Figure 2: The NSP3–p130Cas complex.
Figure 3: FAT domain of p130Cas is well defined and uses a previously unknown extended binding mode.
Figure 4: Analysis of NSP family–p130Cas interactions in vitro and in vivo.
Figure 5: NSP-Cas modules form class-specific yet promiscuous signaling nodes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Brinkman, A., van der Flier, S., Kok, E.M. & Dorssers, L.C. BCAR1, a human homologue of the adapter protein p130Cas, and antiestrogen resistance in breast cancer cells. J. Natl. Cancer Inst. 92, 112–120 (2000).

    Article  CAS  Google Scholar 

  2. van Agthoven, T. et al. Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J. 17, 2799–2808 (1998).

    Article  CAS  Google Scholar 

  3. Cabodi, S., Del Pilar Camacho-Leal, M., Di Stefano, P. & Defilippi, P. Integrin signalling adaptors: not only figurants in the cancer story. Nat. Rev. Cancer 10, 858–870 (2010).

    Article  CAS  Google Scholar 

  4. Felekkis, K., Quilliam, L.A. & Lerner, A. Characterization of AND-34 function and signaling. Methods Enzymol. 407, 55–63 (2006).

    Article  CAS  Google Scholar 

  5. Gotoh, T., Cai, D., Tian, X., Feig, L.A. & Lerner, A. p130Cas regulates the activity of AND-34, a novel Ral, Rap1, and R-Ras guanine nucleotide exchange factor. J. Biol. Chem. 275, 30118–30123 (2000).

    Article  CAS  Google Scholar 

  6. Lu, Y., Brush, J. & Stewart, T.A. NSP1 defines a novel family of adaptor proteins linking integrin and tyrosine kinase receptors to the c-Jun N-terminal kinase/stress-activated protein kinase signaling pathway. J. Biol. Chem. 274, 10047–10052 (1999).

    Article  CAS  Google Scholar 

  7. Sakakibara, A. & Hattori, S. Chat, a Cas/HEF1-associated adaptor protein that integrates multiple signaling pathways. J. Biol. Chem. 275, 6404–6410 (2000).

    Article  CAS  Google Scholar 

  8. Cai, D. et al. The GDP exchange factor AND-34 is expressed in B cells, associates with HEF1, and activates Cdc42. J. Immunol. 170, 969–978 (2003).

    Article  CAS  Google Scholar 

  9. Al-Shami, A. et al. The adaptor protein Sh2d3c is critical for marginal zone B cell development and function. J. Immunol. 185, 327–334 (2010).

    Article  CAS  Google Scholar 

  10. Alexandropoulos, K. & Regelmann, A.G. Regulation of T-lymphocyte physiology by the Chat-H/CasL adapter complex. Immunol. Rev. 232, 160–174 (2009).

    Article  CAS  Google Scholar 

  11. Browne, C.D. et al. SHEP1 partners with CasL to promote marginal zone B-cell maturation. Proc. Natl. Acad. Sci. USA 107, 18944–18949 (2010).

    Article  CAS  Google Scholar 

  12. Schrecengost, R.S., Riggins, R.B., Thomas, K.S., Guerrero, M.S. & Bouton, A.H. Breast cancer antiestrogen resistance-3 expression regulates breast cancer cell migration through promotion of p130Cas membrane localization and membrane ruffling. Cancer Res. 67, 6174–6182 (2007).

    Article  CAS  Google Scholar 

  13. Schuh, N.R., Guerrero, M.S., Schrecengost, R.S. & Bouton, A.H. BCAR3 regulates Src/p130 Cas association, Src kinase activity, and breast cancer adhesion signaling. J. Biol. Chem. 285, 2309–2317 (2010).

    Article  CAS  Google Scholar 

  14. Wang, L. et al. The SRC homology 2 domain protein Shep1 plays an important role in the penetration of olfactory sensory axons into the forebrain. J. Neurosci. 30, 13201–13210 (2010).

    Article  CAS  Google Scholar 

  15. Cai, D., Clayton, L.K., Smolyar, A. & Lerner, A. AND-34, a novel p130Cas-binding thymic stromal cell protein regulated by adhesion and inflammatory cytokines. J. Immunol. 163, 2104–2112 (1999).

    CAS  PubMed  Google Scholar 

  16. Garron, M.-L. et al. Structural insights into the association between BCAR3 and Cas family members, an atypical complex implicated in anti-oestrogen resistance. J. Mol. Biol. 386, 190–203 (2009).

    Article  CAS  Google Scholar 

  17. Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D. & Kuriyan, J. The structural basis of the activation of Ras by Sos. Nature 394, 337–343 (1998).

    Article  CAS  Google Scholar 

  18. Rehmann, H., Das, J., Knipscheer, P., Wittinghofer, A. & Bos, J.L. Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state. Nature 439, 625–628 (2006).

    Article  CAS  Google Scholar 

  19. Freedman, T.S. et al. A Ras-induced conformational switch in the Ras activator Son of sevenless. Proc. Natl. Acad. Sci. USA 103, 16692–16697 (2006).

    Article  CAS  Google Scholar 

  20. Rehmann, H. et al. Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B. Nature 455, 124–127 (2008).

    Article  CAS  Google Scholar 

  21. Freedman, T.S. et al. Differences in flexibility underlie functional differences in the Ras activators son of sevenless and Ras guanine nucleotide releasing factor 1. Structure 17, 41–53 (2009).

    Article  CAS  Google Scholar 

  22. Bos, J.L., de Rooij, J. & Reedquist, K.A. Rap1 signalling: adhering to new models. Nat. Rev. Mol. Cell Biol. 2, 369–377 (2001).

    Article  CAS  Google Scholar 

  23. Dodelet, V.C., Pazzagli, C., Zisch, A.H., Hauser, C.A. & Pasquale, E.B. A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A. J. Biol. Chem. 274, 31941–31946 (1999).

    Article  CAS  Google Scholar 

  24. Sakakibara, A., Ohba, Y., Kurokawa, K., Matsuda, M. & Hattori, S. Novel function of Chat in controlling cell adhesion via Cas-Crk-C3G-pathway-mediated Rap1 activation. J. Cell Sci. 115, 4915–4924 (2002).

    Article  CAS  Google Scholar 

  25. Riggins, R.B., Quilliam, L.A. & Bouton, A.H. Synergistic promotion of c-Src activation and cell migration by Cas and AND-34/BCAR3. J. Biol. Chem. 278, 28264–28273 (2003).

    Article  CAS  Google Scholar 

  26. van den Berghe, N., Cool, R.H., Horn, G. & Wittinghofer, A. Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N). Oncogene 15, 845–850 (1997).

    Article  CAS  Google Scholar 

  27. Dail, M. et al. SHEP1 function in cell migration is impaired by a single amino acid mutation that disrupts association with the scaffolding protein cas but not with Ras GTPases. J. Biol. Chem. 279, 41892–41902 (2004).

    Article  CAS  Google Scholar 

  28. Deakin, N.O. & Turner, C.E. Paxillin comes of age. J. Cell Sci. 121, 2435–2444 (2008).

    Article  CAS  Google Scholar 

  29. Bertolucci, C.M., Guibao, C.D. & Zheng, J. Structural features of the focal adhesion kinase-paxillin complex give insight into the dynamics of focal adhesion assembly. Protein Sci. 14, 644–652 (2005).

    Article  CAS  Google Scholar 

  30. Hoellerer, M.K. et al. Molecular recognition of paxillin LD motifs by the focal adhesion targeting domain. Structure 11, 1207–1217 (2003).

    Article  CAS  Google Scholar 

  31. Lulo, J., Yuzawa, S. & Schlessinger, J. Crystal structures of free and ligand-bound focal adhesion targeting domain of Pyk2. Biochem. Biophys. Res. Commun. 383, 347–352 (2009).

    Article  CAS  Google Scholar 

  32. Thomas, J.W. et al. The role of focal adhesion kinase binding in the regulation of tyrosine phosphorylation of paxillin. J. Biol. Chem. 274, 36684–36692 (1999).

    Article  CAS  Google Scholar 

  33. Vanden Borre, P., Near, R.I., Makkinje, A., Mostoslavsky, G. & Lerner, A. BCAR3/AND-34 can signal independent of complex formation with CAS family members or the presence of p130Cas. Cell. Signal. 23, 1030–1040 (2011).

    Article  CAS  Google Scholar 

  34. van Agthoven, T. et al. Functional identification of genes causing estrogen independence of human breast cancer cells. Breast Cancer Res. Treat. 114, 23–30 (2009).

    Article  Google Scholar 

  35. Ji, H. et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807–810 (2007).

    Article  CAS  Google Scholar 

  36. Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125, 1269–1281 (2006).

    Article  CAS  Google Scholar 

  37. Sondermann, H. et al. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119, 393–405 (2004).

    Article  CAS  Google Scholar 

  38. Margarit, S.M. et al. Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685–695 (2003).

    Article  CAS  Google Scholar 

  39. Roselli, S., Wallez, Y., Wang, L., Vervoort, V. & Pasquale, E.B. The SH2 domain protein Shep1 regulates the in vivo signaling function of the scaffolding protein Cas. Cell. Signal. 22, 1745–1752 (2010).

    Article  CAS  Google Scholar 

  40. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  Google Scholar 

  41. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  42. Storoni, L., McCoy, A. & Read, R. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D Biol. Crystallogr. 60, 432–438 (2004).

    Article  Google Scholar 

  43. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  44. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  45. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  46. Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215–230 (2006).

    Google Scholar 

  47. Rychlewski, L., Jaroszewski, L., Li, W. & Godzik, A. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci. 9, 232–241 (2000).

    Article  CAS  Google Scholar 

  48. Eswar, N., Eramian, D., Webb, B., Shen, M.Y. & Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008).

    Article  CAS  Google Scholar 

  49. Nassar, N. et al. The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560 (1995).

    Article  CAS  Google Scholar 

  50. Cherfils, J. et al. Crystal structures of the small G protein Rap2A in complex with its substrate GTP, with GDP and with GTPgammaS. EMBO J. 16, 5582–5591 (1997).

    Article  CAS  Google Scholar 

  51. Lenzen, C.U., Cool, R.H. & Wittinghofer, A. Analysis of intrinsic and CDC25-stimulated guanine nucleotide exchange of p21ras-nucleotide complexes by fluorescence measurements. Methods Enzymol. 255, 95–109 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Snipas for protein sequencing, A. Bobkov for analytical ultracentrifugation and isothermal titration calorimetry and G. Salvesen for critical discussion of the manuscript. We also thank the Hope for a Cure Foundation for donation of equipment, J. Badger (DeltaG Technologies) for assistance in model evaluation, and the NKI Protein Facility for providing expression vectors. This work was supported by US National Institutes of Health (NIH) grants P01CA102583 and R01CA160457 to S.J.R. and E.B.P., R01CA116099 and P01HD025938 to E.B.P. and DOD-BCRP Fellowship BC100466 to P.D.M. Data collection at beamline X29 of the National Synchrotron Light Source was also supported by Biological and Environmental Research Department of Energy and the NIH National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Contributions

P.D.M. grew crystals, solved the crystal structures, designed and carried out in vitro experiments and wrote the manuscript. Y.W. designed, carried out and analyzed in vivo experiments, M.K.D. and J.J.L. expressed and purified proteins and grew initial NSP3–p130Cas crystals. H.R. carried out crystallographic data collection. S.J.R. and E.B.P. designed experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Stefan J Riedl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 4976 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mace, P., Wallez, Y., Dobaczewska, M. et al. NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling. Nat Struct Mol Biol 18, 1381–1387 (2011). https://doi.org/10.1038/nsmb.2152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing