Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conserved PUF–Ago–eEF1A complex attenuates translation elongation

Abstract

PUF (Pumilio/FBF) RNA-binding proteins and Argonaute (Ago) miRNA-binding proteins regulate mRNAs post-transcriptionally, each acting through similar, yet distinct, mechanisms. Here, we report that PUF and Ago proteins can also function together in a complex with a core translation elongation factor, eEF1A, to repress translation elongation. Both nematode (Caenorhabditis elegans) and mammalian PUF–Ago–eEF1A complexes were identified, using coimmunoprecipitation and recombinant protein assays. Nematode CSR-1 (Ago) promoted repression of FBF (PUF) target mRNAs in in vivo assays, and the FBF-1–CSR-1 heterodimer inhibited EFT-3 (eEF1A) GTPase activity in vitro. Mammalian PUM2–Ago–eEF1A inhibited translation of nonadenylated and polyadenylated reporter mRNAs in vitro. This repression occurred after translation initiation and led to ribosome accumulation within the open reading frame, roughly at the site where the nascent polypeptide emerged from the ribosomal exit tunnel. Together, these data suggest that a conserved PUF–Ago–eEF1A complex attenuates translation elongation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FBF-1 binds CSR-1 to repress target mRNA.
Figure 2: FBF-1–CSR-1–EFT-3 ternary complex formation reduces EFT-3 GTPase activity.
Figure 3: PUM2–Ago–eEF1A complex inhibits protein production.
Figure 4: Kinetics of PUM2 translational repression.
Figure 5: Human PUM2 attenuates translation elongation.

Similar content being viewed by others

References

  1. Thompson, B., Wickens, M. & Kimble, J. Translational control in development. in Translational Control in Biology and Medicine (eds. Mathews, M.B., Sonenberg, N. & Hershey, J.W.B.) 507–544 (Cold Spring Harbor Laboratory Press, Woodbury, New York, 2007).

  2. Dubnau, J. et al. The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr. Biol. 13, 286–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez-Garcia, I. & Miska, E.A. MicroRNA functions in animal development and human disease. Development 132, 4653–4662 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Wickens, M., Bernstein, D.S., Kimble, J. & Parker, R.A. PUF family portrait: 3′UTR regulation as a way of life. Trends Genet. 18, 150–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Goldstrohm, A.C., Hook, B.A., Seay, D.J. & Wickens, M. PUF proteins bind Pop2p to regulate messenger mRNAs. Nat. Struct. Mol. Biol. 13, 533–539 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Suh, N. et al. FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics 181, 1249–1260 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chagnovich, D. & Lehmann, R. Poly(A)-independent regulation of maternal hunchback translation in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 98, 11359–11364 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hook, B.A., Goldstrohm, A.C., Seay, D.J. & Wickens, M. Two yeast PUF proteins negatively regulate a single mRNA. J. Biol. Chem. 282, 15430–15438 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Djuranovic, S., Nahvi, A. & Green, R. A parsimonious model for gene regulation by miRNAs. Science 331, 550–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fabian, M.R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Pillai, R.S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Humphreys, D.T., Westman, B.J., Martin, D.I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. USA 102, 16961–16966 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Olsen, P.H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Petersen, C.P., Bordeleau, M.E., Pelletier, J. & Sharp, P.A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, B. et al. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390, 477–484 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Luitjens, C., Gallegos, M., Kraemer, B., Kimble, J. & Wickens, M. CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev. 14, 2596–2609 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kraemer, B. et al. NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr. Biol. 9, 1009–1018 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Claycomb, J.M. et al. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139, 123–134 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rhoads, R.E., Dinkova, T.D. & Korneeva, N.L. Mechanism and regulation of translation in C. elegans. in WormBook (ed. The C. elegans Research Community) doi/10.1895/wormbook.1.63.1 (WormBook, 2006).

  22. Lee, M.-H. et al. Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet. 3, e233 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aoki, K., Moriguchi, H., Yoshioka, T., Okawa, K. & Tabara, H. In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. EMBO J. 26, 5007–5019 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gu, W. et al. Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol. Cell 36, 231–244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crittenden, S.L. et al. A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417, 660–663 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Galgano, A. et al. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS ONE 3, e3164 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Merritt, C., Rasoloson, D., Ko, D. & Seydoux, G. 3′ UTRs are the primary regulators of gene expression in the C. elegans germline. Curr. Biol. 18, 1476–1482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Merritt, C. & Seydoux, G. The Puf RNA-binding proteins FBF-1 and FBF-2 inhibit the expression of synaptonemal complex proteins in germline stem cells. Development 137, 1787–1798 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kershner, A.M. & Kimble, J. Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator. Proc. Natl. Acad. Sci. USA 107, 3936–3941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. She, X., Xu, X., Fedotov, A., Kelly, W.G. & Maine, E.M. Regulation of heterochromatin assembly on unpaired chromosomes during Caenorhabditis elegans meiosis by components of a small RNA-mediated pathway. PLoS Genet. 5, e1000624 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Meister, G. et al. Identification of novel argonaute-associated proteins. Curr. Biol. 15, 2149–2155 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Parmeggiani, A. & Sander, G. Properties and regulation of the GTPase activities of elongation factors Tu and G, and of initiation factor 2. Mol. Cell. Biochem. 35, 129–158 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Cool, R.H. & Parmeggiani, A. Substitution of histidine-84 and the GTPase mechanism of elongation factor Tu. Biochemistry 30, 362–366 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Mili, S. & Steitz, J.A. Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. RNA 10, 1692–1694 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, X., McLachlan, J., Zamore, P.D. & Hall, T.M.T. Modular recognition of RNA by a human pumilio-homology domain. Cell 110, 501–512 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Zamore, P.D., Williamson, J.R. & Lehmann, R. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3, 1421–1433 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fox, M.S. & Reijo Pera, R.A. Male infertility, genetic analysis of the DAZ genes on the human Y chromosome and genetic analysis of DNA repair. Mol. Cell. Endocrinol. 184, 41–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Sonoda, J. & Wharton, R.P. Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev. 13, 2704–2712 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ricci, E.P. et al. Activation of a microRNA response in trans reveals a new role for poly(A) in translational repression. Nucleic Acids Res. 39, 5215–5231 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nottrott, S., Simard, M.J. & Richter, J.D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat. Struct. Mol. Biol. 13, 1108–1114 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R. & Weissman, J.S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beckmann, R. et al. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278, 2123–2126 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Miyoshi, K., Okada, T.N., Siomi, H. & Siomi, M.C. Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA 15, 1282–1291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chakravarty, I., Bagchi, M.K., Roy, R., Banerjee, A.C. & Gupta, N.K. Protein synthesis in rabbit reticulocytes. Purification and properties of an Mr 80,000 polypeptide (Co-eIF-2A80) with Co-eIF-2A activity. J. Biol. Chem. 260, 6945–6949 (1985).

    CAS  PubMed  Google Scholar 

  45. Caudy, A.A., Myers, M., Hannon, G.J. & Hammond, S.M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491–2496 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walter, P., Ibrahimi, I. & Blobel, G. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J. Cell Biol. 91, 545–550 (1981).

    Article  CAS  PubMed  Google Scholar 

  47. Wolin, S.L. & Walter, P. Signal recognition particle mediates a transient elongation arrest of preprolactin in reticulocyte lysate. J. Cell Biol. 109, 2617–2622 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Hussey, G.S. et al. Identification of an mRNP complex regulating tumorigenesis at the translational elongation step. Mol. Cell 41, 419–431 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rajagopalan, L., Pereira, F.A., Lichtarge, O. & Brownell, W.E. Identification of functionally important residues/domains in membrane proteins using an evolutionary approach coupled with systematic mutational analysis. Methods Mol. Biol. 493, 287–297 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gupta, Y.K., Nair, D.T., Wharton, R.P. & Aggarwal, A.K. Structures of human Pumilio with noncognate RNAs reveal molecular mechanisms for binding promiscuity. Structure 16, 549–557 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Tabara (Kyoto University) for providing CSR-1 and DRH-3 antibodies and E. Kipreos (University of Georgia) for the CYE-1 antibody. We thank Kimble and Wickens lab members for discussion; we also thank E. Lund and S. Kennedy for critical reading of the manuscript and A. Helsley-Marchbanks and L. Vanderploeg for help with the manuscript and figure preparation. Mass spectrometry was carried out with support from the Human Proteomics Program at the University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Contributions

K.F. conducted the experiments with the exception of phylogenetic analysis (Z.T.C.), luciferase reporter mRNA production (A.C.) and csr-1 mutant generation (P.K.-C.). K.F., M.P.W. and J.K. prepared the manuscript. K.F. is supported by PF-10-127-01-DDC from the American Cancer Society, Z.T.C. by US National Institutes of Health (NIH) postdoctoral fellowship F32 GM095169, A.C. by NIH training grant T32 GM07215 and an Advanced Opportunity Fellowship from the University of Wisconsin-Madison, M.P.W. by NIH grants GM031892 and GM050942 and J.K. by NIH grant GM069454. J.K. is an investigator of the Howard Hughes Medical Institute.

Corresponding author

Correspondence to Judith Kimble.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Table 1 and Supplementary Methods (PDF 8448 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friend, K., Campbell, Z., Cooke, A. et al. A conserved PUF–Ago–eEF1A complex attenuates translation elongation. Nat Struct Mol Biol 19, 176–183 (2012). https://doi.org/10.1038/nsmb.2214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing