Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II

Abstract

Promoter-proximal pausing by RNA polymerase II (Pol II) ensures gene-specific regulation and RNA quality control. Structural considerations suggested a requirement for initiation-factor eviction in elongation-factor engagement and pausing of transcription complexes. Here we show that selective inhibition of Cdk7—part of TFIIH—increases TFIIE retention, prevents DRB sensitivity–inducing factor (DSIF) recruitment and attenuates pausing in human cells. Pause release depends on Cdk9–cyclin T1 (P-TEFb); Cdk7 is also required for Cdk9-activating phosphorylation and Cdk9-dependent downstream events—Pol II C-terminal domain Ser2 phosphorylation and histone H2B ubiquitylation—in vivo. Cdk7 inhibition, moreover, impairs Pol II transcript 3′-end formation. Cdk7 thus acts through TFIIE and DSIF to establish, and through P-TEFb to relieve, barriers to elongation: incoherent feedforward that might create a window to recruit RNA-processing machinery. Therefore, cyclin-dependent kinases govern Pol II handoff from initiation to elongation factors and cotranscriptional RNA maturation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cdk7 inhibition prevents exchange of TFIIE for DSIF and attenuates promoter-proximal pausing.
Figure 2: Cdk7 activates Cdk9as in vitro.
Figure 3: Cdk7 activates wild-type Cdk9 in vitro and in vivo.
Figure 4: Cdk7 activity is required for Cdk9 Thr186 phosphorylation on chromatin in vivo.
Figure 5: Cdk7 promotes Rpb1-Ser2 phosphorylation in human cells.
Figure 6: Cdk7 activity is required for normal histone mRNA 3′-end formation.
Figure 7: Cdk7 T-loop phosphorylation stimulates TFIIE phosphorylation and is spatially regulated on chromatin.

Similar content being viewed by others

References

  1. Gilchrist, D.A. et al. Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 143, 540–551 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilchrist, D.A. et al. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev. 22, 1921–1933 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fisher, R.P. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J. Cell Sci. 118, 5171–5180 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Larochelle, S. et al. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell 25, 839–850 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Glover-Cutter, K. et al. TFIIH-associated Cdk7 kinase functions in phosphorylation of C-terminal domain Ser7 residues, promoter-proximal pausing, and termination by RNA polymerase II. Mol. Cell. Biol. 29, 5455–5464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cho, E.J., Takagi, T., Moore, C.R. & Buratowski, S. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11, 3319–3326 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Glover-Cutter, K., Kim, S., Espinosa, J. & Bentley, D.L. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat. Struct. Mol. Biol. 15, 71–78 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez, C.R. et al. Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II. Mol. Cell. Biol. 20, 104–112 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwartz, B.E., Larochelle, S., Suter, B. & Lis, J.T. Cdk7 is required for full activation of Drosophila heat shock genes and RNA polymerase II phosphorylation in vivo. Mol. Cell. Biol. 23, 6876–6886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grohmann, D. et al. The initiation factor TFE and the elongation factor Spt4/5 compete for the RNAP clamp during transcription initiation and elongation. Mol. Cell 43, 263–274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klein, B.J. et al. RNA polymerase and transcription elongation factor Spt4/5 complex structure. Proc. Natl. Acad. Sci. USA 108, 546–550 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Rucobo, F.W., Sainsbury, S., Cheung, A.C. & Cramer, P. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. EMBO J. 30, 1302–1310 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nechaev, S. & Adelman, K. Pol II waiting in the starting gates: regulating the transition from transcription initiation into productive elongation. Biochim. Biophys. Acta 1809, 34–45 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Rahl, P.B. et al. c-Myc regulates transcriptional pause release. Cell 141, 432–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamada, T. et al. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol. Cell 21, 227–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Peterlin, B.M. & Price, D.H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, R., Yang, Z. & Zhou, Q. Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J. Biol. Chem. 279, 4153–4160 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Phatnani, H.P. & Greenleaf, A.L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, J.B. & Sharp, P.A. Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase. J. Biol. Chem. 276, 12317–12323 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Baumli, S. et al. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J. 27, 1907–1918 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pei, Y. et al. Cyclin-dependent kinase 9 (Cdk9) of fission yeast is activated by the CDK-activating kinase Csk1, overlaps functionally with the TFIIH-associated kinase Mcs6, and associates with the mRNA cap methyltransferase Pcm1 in vivo. Mol. Cell. Biol. 26, 777–788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yao, S. & Prelich, G. Activation of the Bur1-Bur2 cyclin-dependent kinase complex by Cak1. Mol. Cell. Biol. 22, 6750–6758 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pirngruber, J. et al. CDK9 directs H2B monoubiquitination and controls replication-dependent histone mRNA 3′-end processing. EMBO Rep. 10, 894–900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohkuma, Y. & Roeder, R.G. Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation. Nature 368, 160–163 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Yankulov, K.Y. & Bentley, D.L. Regulation of CDK7 substrate specificity by MAT1 and TFIIH. EMBO J. 16, 1638–1646 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Larochelle, S. et al. Dichotomous but stringent substrate selection by the dual-function Cdk7 complex revealed by chemical genetics. Nat. Struct. Mol. Biol. 13, 55–62 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Wada, T., Takagi, T., Yamaguchi, Y., Watanabe, D. & Handa, H. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J. 17, 7395–7403 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamaguchi, Y. et al. NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97, 41–51 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Gomes, N.P. et al. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev. 20, 601–612 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shah, K., Liu, Y., Deirmengian, C. & Shokat, K.M. Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc. Natl. Acad. Sci. USA 94, 3565–3570 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Merrick, K.A. et al. Switching Cdk2 on or off with small molecules to reveal requirements in human cell proliferation. Mol. Cell 42, 624–636 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qiu, H., Hu, C. & Hinnebusch, A.G. Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol. Cell 33, 752–762 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Viladevall, L. et al. TFIIH and P-TEFb coordinate transcription with capping enzyme recruitment at specific genes in fission yeast. Mol. Cell 33, 738–751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shema, E., Kim, J., Roeder, R.G. & Oren, M. RNF20 inhibits TFIIS-facilitated transcriptional elongation to suppress pro-oncogenic gene expression. Mol. Cell 42, 477–488 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dominski, Z. & Marzluff, W.F. Formation of the 3′ end of histone mRNA: getting closer to the end. Gene 396, 373–390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Narita, T. et al. NELF interacts with CBC and participates in 3′ end processing of replication-dependent histone mRNAs. Mol. Cell 26, 349–365 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Larochelle, S. et al. T-loop phosphorylation stabilizes the CDK7-cyclin H-MAT1 complex in vivo and regulates its CTD kinase activity. EMBO J. 20, 3749–3759 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garrett, S. et al. Reciprocal activation by cyclin-dependent kinases 2 and 7 is directed by substrate specificity determinants outside the T-loop. Mol. Cell. Biol. 21, 88–99 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hermand, D. et al. Fission yeast Csk1 is a CAK-activating kinase (CAKAK). EMBO J. 17, 7230–7238 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, K.M., Saiz, J.E., Barton, W.A. & Fisher, R.P. Cdc2 activation in fission yeast depends on Mcs6 and Csk1, two partially redundant Cdk-activating kinases CAKs). Curr. Biol. 9, 441–444 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Morgan, D.O. Cyclin-dependent kinases: engines, clocks and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. St Amour, C.V. et al. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition. Mol. Cell. Biol. 32, 2372–2383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Czudnochowski, N., Bosken, C.A. & Geyer, M. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nat. Commun. 3, 842 (2012).

    Article  PubMed  Google Scholar 

  45. Merrick, K.A. et al. Distinct activation pathways confer cyclin binding selectivity on Cdk1 and Cdk2 in human cells. Mol. Cell 32, 662–672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Loog, M. & Morgan, D.O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434, 104–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Kraybill, B.C., Elkin, L.L., Blethrow, J.D., Morgan, D.O. & Shokat, K.M. Inhibitor scaffolds as new allele specific kinase substrates. J. Am. Chem. Soc. 124, 12118–12128 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Dignam, J.D., Lebovitz, R.M. & Roeder, R.G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gamble, M.J., Erdjument-Bromage, H., Tempst, P., Freedman, L.P. & Fisher, R.P. The histone chaperone TAF-I/SET/INHAT is required for transcription in vitro of chromatin templates. Mol. Cell. Biol. 25, 797–807 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Ramanathan, N. Barboza, N. Downing, A.D. Kostic and A. Searleman for assistance in the early phases of this project and Z. F. Burton (Michigan State University, East Lansing, Michigan, USA) for the TFIIE expression constructs. R.A. was supported by a Beatriu de Pinos fellowship of the Generalitat de Catalunya. This work was supported by the US National Institutes of Health grants GM056985 to R.P.F., GM063873 to D.L.B. and EB001987 to K.M.S.

Author information

Authors and Affiliations

Authors

Contributions

S.L., D.L.B. and R.P.F. designed the research and interpreted data. S.L., R.A., K.G.-C. and M.S. performed experiments and analyzed data. J.J.A., C.Z. and K.M.S. provided reagents. S.L. and R.P.F. wrote the paper.

Corresponding author

Correspondence to Robert P Fisher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 1 (PDF 2652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larochelle, S., Amat, R., Glover-Cutter, K. et al. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat Struct Mol Biol 19, 1108–1115 (2012). https://doi.org/10.1038/nsmb.2399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2399

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing