Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay

Abstract

The exoRNase Eri1 inhibits RNA interference and trims the 5.8S rRNA 3′ end. It also binds to the stem-loop of histone mRNAs, but the functional importance of this interaction remains elusive. Histone mRNAs are normally degraded at the end of S phase or after pharmacological inhibition of replication. Both processes are impaired in Eri1-deficient mouse cells, which instead accumulate oligouridylated histone mRNAs. Eri1 trims the mature histone mRNAs by two unpaired nucleotides at the 3′ end but stalls close to the double-stranded stem. Upon oligouridylation of the histone mRNA, the Lsm1–7 heteroheptamer recognizes the oligo(U) tail and interacts with Eri1, whose catalytic activity is then able to degrade the stem-loop in a stepwise manner. These data demonstrate how degradation of histone mRNAs is initiated when 3′ oligouridylation creates a cis element that enables Eri1 to process the double-stranded stem-loop structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eri1 is required for the degradation of replication-dependent histone mRNAs.
Figure 2: Eri1 binds, degrades and trims the 3′ end of cellular histone mRNAs.
Figure 3: Eri1 degrades oligouridylated histone mRNAs.
Figure 4: Impaired cell cycle–dependent degradation of oligouridylated histone mRNAs in Eri1-deficient cells.
Figure 5: Oligouridylation of histone mRNA represses translation and promotes Eri1-mediated degradation.
Figure 6: Lsm1 binds to Eri1 and oligouridylated Hist1h2ak mRNA after hydroxyurea treatment.
Figure 7: Eri1 degrades through the stem-loop in consecutive cycles of oligouridylation and partial degradation.

Similar content being viewed by others

References

  1. Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427, 645–649 (2004).

    Article  CAS  Google Scholar 

  2. Iida, T., Kawaguchi, R. & Nakayama, J. Conserved ribonuclease, Eri1, negatively regulates heterochromatin assembly in fission yeast. Curr. Biol. 16, 1459–1464 (2006).

    Article  CAS  Google Scholar 

  3. Bühler, M., Verdel, A. & Moazed, D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. Cell 125, 873–886 (2006).

    Article  Google Scholar 

  4. Thomas, M.F. et al. Eri1 regulates microRNA homeostasis and mouse lymphocyte development and antiviral function. Blood 120, 130–142 (2012).

    Article  CAS  Google Scholar 

  5. Gabel, H.W. & Ruvkun, G. The exonuclease ERI-1 has a conserved dual role in 5.8S rRNA processing and RNAi. Nat. Struct. Mol. Biol. 15, 531–533 (2008).

    Article  CAS  Google Scholar 

  6. Ansel, K.M. et al. Mouse Eri1 interacts with the ribosome and catalyzes 5.8S rRNA processing. Nat. Struct. Mol. Biol. 15, 523–530 (2008).

    Article  CAS  Google Scholar 

  7. Dominski, Z., Yang, X.C., Kaygun, H., Dadlez, M. & Marzluff, W.F. A 3′ exonuclease that specifically interacts with the 3′ end of histone mRNA. Mol. Cell 12, 295–305 (2003).

    Article  CAS  Google Scholar 

  8. Yang, X.C., Purdy, M., Marzluff, W.F. & Dominski, Z. Characterization of 3′hExo, a 3′ exonuclease specifically interacting with the 3′ end of histone mRNA. J. Biol. Chem. 281, 30447–30454 (2006).

    Article  CAS  Google Scholar 

  9. Battle, D.J. & Doudna, J.A. The stem-loop binding protein forms a highly stable and specific complex with the 3′ stem-loop of histone mRNAs. RNA 7, 123–132 (2001).

    Article  CAS  Google Scholar 

  10. Martin, F., Michel, F., Zenklusen, D., Muller, B. & Schumperli, D. Positive and negative mutant selection in the human histone hairpin-binding protein using the yeast three-hybrid system. Nucleic Acids Res. 28, 1594–1603 (2000).

    Article  CAS  Google Scholar 

  11. Williams, A.S. & Marzluff, W.F. The sequence of the stem and flanking sequences at the 3′ end of histone mRNA are critical determinants for the binding of the stem-loop binding protein. Nucleic Acids Res. 23, 654–662 (1995).

    Article  CAS  Google Scholar 

  12. Yang, X.C., Torres, M.P., Marzluff, W.F. & Dominski, Z. Three proteins of the U7-specific Sm ring function as the molecular ruler to determine the site of 3′-end processing in mammalian histone pre-mRNA. Mol. Cell. Biol. 29, 4045–4056 (2009).

    Article  CAS  Google Scholar 

  13. Marzluff, W.F., Gongidi, P., Woods, K.R., Jin, J. & Maltais, L.J. The human and mouse replication-dependent histone genes. Genomics 80, 487–498 (2002).

    Article  CAS  Google Scholar 

  14. Meeks-Wagner, D. & Hartwell, L.H. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell 44, 43–52 (1986).

    Article  CAS  Google Scholar 

  15. Graves, R.A., Pandey, N.B., Chodchoy, N. & Marzluff, W.F. Translation is required for regulation of histone mRNA degradation. Cell 48, 615–626 (1987).

    Article  CAS  Google Scholar 

  16. Pandey, N.B. & Marzluff, W.F. The stem-loop structure at the 3′ end of histone mRNA is necessary and sufficient for regulation of histone mRNA stability. Mol. Cell. Biol. 7, 4557–4559 (1987).

    Article  CAS  Google Scholar 

  17. Parker, R. & Song, H. The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121–127 (2004).

    Article  CAS  Google Scholar 

  18. Tharun, S. & Parker, R. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol. Cell 8, 1075–1083 (2001).

    Article  CAS  Google Scholar 

  19. Wang, Z. & Kiledjian, M. Functional link between the mammalian exosome and mRNA decapping. Cell 107, 751–762 (2001).

    Article  CAS  Google Scholar 

  20. Mullen, T.E. & Marzluff, W.F. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5′ to 3′ and 3′ to 5′. Genes Dev. 22, 50–65 (2008).

    Article  CAS  Google Scholar 

  21. Kaygun, H. & Marzluff, W.F. Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1. Nat. Struct. Mol. Biol. 12, 794–800 (2005).

    Article  CAS  Google Scholar 

  22. Schmidt, M.J., West, S. & Norbury, C.J. The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation. RNA 17, 39–44 (2011).

    Article  CAS  Google Scholar 

  23. Sobti, M., Cubeddu, L., Haynes, P.A. & Mabbutt, B.C. Engineered rings of mixed yeast Lsm proteins show differential interactions with translation factors and U-rich RNA. Biochemistry 49, 2335–2345 (2010).

    Article  CAS  Google Scholar 

  24. Bonner, W.M., Mannironi, C., Orr, A., Pilch, D.R. & Hatch, C.L. Histone H2A.X gene transcription is regulated differently than transcription of other replication-linked histone genes. Mol. Cell. Biol. 13, 984–992 (1993).

    Article  CAS  Google Scholar 

  25. Mannironi, C., Bonner, W.M. & Hatch, C.L. H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3′ processing signals. Nucleic Acids Res. 17, 9113–9126 (1989).

    Article  CAS  Google Scholar 

  26. Herrero, A.B. & Moreno, S. Lsm1 promotes genomic stability by controlling histone mRNA decay. EMBO J. 30, 2008–2018 (2011).

    Article  CAS  Google Scholar 

  27. Glasmacher, E. et al. Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat. Immunol. 11, 725–733 (2010).

    Article  CAS  Google Scholar 

  28. Tharun, S. et al. Yeast Sm-like proteins function in mRNA decapping and decay. Nature 404, 515–518 (2000).

    Article  CAS  Google Scholar 

  29. Song, M.G. & Kiledjian, M. 3′ Terminal oligo U-tract-mediated stimulation of decapping. RNA 13, 2356–2365 (2007).

    Article  CAS  Google Scholar 

  30. Coller, J. & Parker, R. General translational repression by activators of mRNA decapping. Cell 122, 875–886 (2005).

    Article  CAS  Google Scholar 

  31. Hirai, H., Lee, D.I., Natori, S. & Sekimizu, K. Uridylation of U6 RNA in a nuclear extract in Ehrlich ascites tumor cells. J. Biochem. 104, 991–994 (1988).

    Article  CAS  Google Scholar 

  32. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32, 276–284 (2008).

    Article  CAS  Google Scholar 

  33. Jones, M.R. et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat. Cell Biol. 11, 1157–1163 (2009).

    Article  CAS  Google Scholar 

  34. Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).

    Article  CAS  Google Scholar 

  35. Ansel, K.M. et al. Deletion of a conserved Il4 silencer impairs T helper type 1-mediated immunity. Nat. Immunol. 5, 1251–1259 (2004).

    Article  CAS  Google Scholar 

  36. Weinmann, L. et al. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136, 496–507 (2009).

    Article  CAS  Google Scholar 

  37. Ritzi, M. et al. Complex protein-DNA dynamics at the latent origin of DNA replication of Epstein-Barr virus. J. Cell Sci. 116, 3971–3984 (2003).

    Article  CAS  Google Scholar 

  38. Lau, N.C., Lim, L.P., Weinstein, E.G. & Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank W. Pastor and A. Rao (La Jolla Institute of Allergy and Immunology, La Jolla, CA, USA) for providing the FLAG-HA-hERI1 construct. We thank D. Repsilber (Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany) for advice on statistical analyses. R. Lührmann (Max Planck Institute for Biophysical Chemistry, Göttingen, Germany) kindly provided anti-Lsm1 antibodies. This work was supported by the German Research Foundation (DFG HE 3359/3-1 to V.H.).

Author information

Authors and Affiliations

Authors

Contributions

V.H. and K.M.A. conceived of the project idea. K.P.H. and V.H. designed and K.P.H. performed most of the experiments with help from C.W., J.D. and A.S. N.R. carried out the reconstitution experiments. N.R. and G.A.H. performed the immunoprecipitation experiments, and E.K. generated the monoclonal antibodies. K.P.H., V.H. and K.M.A. discussed the data, and K.P.H. and V.H. wrote the manuscript.

Corresponding author

Correspondence to Vigo Heissmeyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–2 (PDF 5087 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoefig, K., Rath, N., Heinz, G. et al. Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay. Nat Struct Mol Biol 20, 73–81 (2013). https://doi.org/10.1038/nsmb.2450

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2450

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing