Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo

Abstract

Histone deacetylase 3 (HDAC3) is an epigenome-modifying enzyme that is required for normal mouse development and tissue-specific functions. In vitro, HDAC3 protein itself has minimal enzyme activity but gains its histone-deacetylation function from stable association with the conserved deacetylase-activating domain (DAD) contained in nuclear receptor co-repressors NCOR1 and SMRT. Here we show that HDAC3 enzyme activity is undetectable in mice bearing point mutations in the DAD of both NCOR1 and SMRT (NS-DADm), despite having normal levels of HDAC3 protein. Local histone acetylation is increased, and genomic HDAC3 recruitment is reduced though not abrogated. Notably, NS-DADm mice are born and live to adulthood, whereas genetic deletion of HDAC3 is embryonic lethal. These findings demonstrate that nuclear receptor co-repressors are required for HDAC3 enzyme activity in vivo and suggest that a deacetylase-independent function of HDAC3 may be required for life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NS-DADm mice expressed normal levels of HDAC3.
Figure 2: HDAC3 was enzymatically inactive in various tissues of NS-DADm mice.
Figure 3: Genomic localization of HDAC3 was significantly reduced in NS-DADm mice.
Figure 4: Local histone acetylation was increased in NS-DADm mice.
Figure 5: The liver phenotype of NS-DADm mice was more modest than that for mice lacking hepatic HDAC3.
Figure 6: Gene expression changes in NS-DADm livers were mild compared to those in HDAC3 protein depletion.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Choudhary, C. et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325, 834–840 (2009).

    Article  CAS  Google Scholar 

  2. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    Article  CAS  Google Scholar 

  3. Hebbes, T.R., Thorne, A.W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402 (1988).

    Article  CAS  Google Scholar 

  4. Lee, D.Y., Hayes, J.J., Pruss, D. & Wolffe, A.P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73–84 (1993).

    Article  CAS  Google Scholar 

  5. Struhl, K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606 (1998).

    Article  CAS  Google Scholar 

  6. Xu, L., Glass, C.K. & Rosenfeld, M.G. Coactivator and co-repressor complexes in nuclear receptor function. Curr. Opin. Genet. Dev. 9, 140–147 (1999).

    Article  CAS  Google Scholar 

  7. Hassig, C.A. & Schreiber, S.L. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr. Opin. Chem. Biol. 1, 300–308 (1997).

    Article  CAS  Google Scholar 

  8. de Ruijter, A.J., van Gennip, A.H., Caron, H.N., Kemp, S. & van Kuilenburg, A.B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749 (2003).

    Article  CAS  Google Scholar 

  9. Haberland, M., Montgomery, R.L. & Olson, E.N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 10, 32–42 (2009).

    Article  CAS  Google Scholar 

  10. Knutson, S.K. et al. Liver-specific deletion of histone deacetylase 3 disrupts metabolic transcriptional networks. EMBO J. 27, 1017–1028 (2008).

    Article  CAS  Google Scholar 

  11. Brehm, A. et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature 391, 597–601 (1998).

    Article  CAS  Google Scholar 

  12. Ferreira, R., Magnaghi-Jaulin, L., Robin, P., Harel-Bellan, A. & Trouche, D. The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. Proc. Natl. Acad. Sci. USA 95, 10493–10498 (1998).

    Article  CAS  Google Scholar 

  13. Luo, R.X., Postigo, A.A. & Dean, D.C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473 (1998).

    Article  CAS  Google Scholar 

  14. Fraga, M.F. et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 37, 391–400 (2005).

    Article  CAS  Google Scholar 

  15. Yeung, F. et al. Modulation of NF-κB–dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

    Article  CAS  Google Scholar 

  16. Feng, D. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331, 1315–1319 (2011).

    Article  CAS  Google Scholar 

  17. Sun, Z. et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 18, 934–942 (2012).

    Article  CAS  Google Scholar 

  18. Mullican, S.E. et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev. 25, 2480–2488 (2011).

    Article  CAS  Google Scholar 

  19. Fischle, W. et al. Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol. Cell 9, 45–57 (2002).

    Article  CAS  Google Scholar 

  20. Zhang, J., Kalkum, M., Chait, B.T. & Roeder, R.G. The N-CoR-HDAC3 nuclear receptor co-repressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol. Cell 9, 611–623 (2002).

    Article  CAS  Google Scholar 

  21. Yoon, H.G. et al. Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1. EMBO J. 22, 1336–1346 (2003).

    Article  CAS  Google Scholar 

  22. Li, J. et al. Both co-repressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J. 19, 4342–4350 (2000).

    Article  CAS  Google Scholar 

  23. Guenther, M.G. et al. A core SMRT co-repressor complex containing HDAC3 and TBL1, a WD40-repeat protein linked to deafness. Genes Dev. 14, 1048–1057 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Guenther, M.G., Yu, J., Kao, G.D., Yen, T.J. & Lazar, M.A. Assembly of the SMRT-histone deacetylase 3 repression complex requires the TCP-1 ring complex. Genes Dev. 16, 3130–3135 (2002).

    Article  CAS  Google Scholar 

  25. Sun, Z. et al. Diet-induced lethality due to deletion of the Hdac3 gene in heart and skeletal muscle. J. Biol. Chem. 286, 33301–33309 (2011).

    Article  CAS  Google Scholar 

  26. Jepsen, K. et al. Combinatorial roles of the nuclear receptor co-repressor in transcription and development. Cell 102, 753–763 (2000).

    Article  CAS  Google Scholar 

  27. Jepsen, K. et al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450, 415–419 (2007).

    Article  CAS  Google Scholar 

  28. Bhaskara, S. et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol. Cell 30, 61–72 (2008).

    Article  CAS  Google Scholar 

  29. Privalsky, M.L. The role of co-repressors in transcriptional regulation by nuclear hormone receptors. Annu. Rev. Physiol. 66, 315–360 (2004).

    Article  CAS  Google Scholar 

  30. Perissi, V. et al. Molecular determinants of nuclear receptor–co-repressor interaction. Genes Dev. 13, 3198–3208 (1999).

    Article  CAS  Google Scholar 

  31. Aasland, R., Stewart, A.F. & Gibson, T. The SANT domain: a putative DNA-binding domain in the SWI-SNF and ADA complexes, the transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem. Sci. 21, 87–88 (1996).

    CAS  PubMed  Google Scholar 

  32. Codina, A. et al. Structural insights into the interaction and activation of histone deacetylase 3 by nuclear receptor co-repressors. Proc. Natl. Acad. Sci. USA 102, 6009–6014 (2005).

    Article  CAS  Google Scholar 

  33. Hu, X. & Lazar, M.A. The CoRNR motif controls the recruitment of co-repressors by nuclear hormone receptors. Nature 402, 93–96 (1999).

    Article  CAS  Google Scholar 

  34. Guenther, M.G., Barak, O. & Lazar, M.A. The SMRT and N-CoR co-repressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol. 21, 6091–6101 (2001).

    Article  CAS  Google Scholar 

  35. Alenghat, T. et al. Nuclear receptor co-repressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 456, 997–1000 (2008).

    Article  CAS  Google Scholar 

  36. You, S.H., Liao, X., Weiss, R.E. & Lazar, M.A. The interaction between nuclear receptor co-repressor and histone deacetylase 3 regulates both positive and negative thyroid hormone action in vivo. Mol. Endocrinol. 24, 1359–1367 (2010).

    Article  CAS  Google Scholar 

  37. Watson, P.J., Fairall, L., Santos, G.M. & Schwabe, J.W. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481, 335–340 (2012).

    Article  CAS  Google Scholar 

  38. Sinha, R.A. et al. Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. J. Clin. Invest. 122, 2428–2438 (2012).

    Article  CAS  Google Scholar 

  39. Jepsen, K. et al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450, 415–419 (2007).

    Article  CAS  Google Scholar 

  40. Montgomery, R.L. et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J. Clin. Invest. 118, 3588–3597 (2008).

    Article  CAS  Google Scholar 

  41. Henck, J.W., Mattsson, J.L., Rezabek, D.H., Carlson, C.L. & Rech, R.H. Developmental neurotoxicity of polybrominated biphenyls. Neurotoxicol. Teratol. 16, 391–399 (1994).

    Article  CAS  Google Scholar 

  42. Mann, R.K. & Grunstein, M. Histone H3 N-terminal mutations allow hyperactivation of the yeast GAL1 gene in vivo. EMBO J. 11, 3297–3306 (1992).

    Article  CAS  Google Scholar 

  43. Brownstein, M.J., Palkovits, M., Saavedra, J.M., Bassiri, R.M. & Utiger, R.D. Thyrotropin-releasing hormone in specific nuclei of rat brain. Science 185, 267–269 (1974).

    Article  CAS  Google Scholar 

  44. Marks, P.A. & Dokmanovic, M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin. Investig. Drugs 14, 1497–1511 (2005).

    Article  CAS  Google Scholar 

  45. Drummond, D.C. et al. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol. 45, 495–528 (2005).

    Article  CAS  Google Scholar 

  46. Gronemeyer, H., Gustafsson, J.A. & Laudet, V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 3, 950–964 (2004).

    Article  CAS  Google Scholar 

  47. Liu, X.F. & Bagchi, M.K. Recruitment of distinct chromatin-modifying complexes by tamoxifen-complexed estrogen receptor at natural target gene promoters in vivo. J. Biol. Chem. 279, 15050–15058 (2004).

    Article  CAS  Google Scholar 

  48. Welsbie, D.S. et al. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res. 69, 958–966 (2009).

    Article  CAS  Google Scholar 

  49. Hoberg, J.E., Yeung, F. & Mayo, M.W. SMRT derepression by the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and survival. Mol. Cell 16, 245–255 (2004).

    Article  CAS  Google Scholar 

  50. Hong, S.H., Yang, Z. & Privalsky, M.L. Arsenic trioxide is a potent inhibitor of the interaction of SMRT co-repressor with Its transcription factor partners, including the PML-retinoic acid receptor α oncoprotein found in human acute promyelocytic leukemia. Mol. Cell. Biol. 21, 7172–7182 (2001).

    Article  CAS  Google Scholar 

  51. Nofsinger, R.R. et al. SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis. Proc. Natl. Acad. Sci. USA 105, 20021–20026 (2008).

    Article  Google Scholar 

  52. Varlakhanova, N., Hahm, J.B. & Privalsky, M.L. Regulation of SMRT co-repressor dimerization and composition by MAP kinase phosphorylation. Mol. Cell. Endocrinol. 332, 180–188 (2011).

    Article  CAS  Google Scholar 

  53. Juan, L.J. et al. Histone deacetylases specifically down-regulate p53-dependent gene activation. J. Biol. Chem. 275, 20436–20443 (2000).

    Article  CAS  Google Scholar 

  54. Luo, J., Su, F., Chen, D., Shiloh, A. & Gu, W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408, 377–381 (2000).

    Article  CAS  Google Scholar 

  55. Ashburner, B.P., Westerheide, S.D. & Baldwin, A.S. Jr. The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) co-repressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol. Cell. Biol. 21, 7065–7077 (2001).

    Article  CAS  Google Scholar 

  56. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

    Article  CAS  Google Scholar 

  57. Shimazu, T. et al. Regulation of SV40 large T-antigen stability by reversible acetylation. Oncogene 25, 7391–7400 (2006).

    Article  CAS  Google Scholar 

  58. Grégoire, S. et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol. Cell. Biol. 27, 1280–1295 (2007).

    Article  Google Scholar 

  59. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by R37DK43806 (M.A.L.) and RC1DK86239 (M.A.L.) from the US National Institute of Diabetes, and Digestive and Kidney Diseases, and by a Mentor Based Fellowship from the American Diabetes Association (M.A.L. and S.-H.Y.). We thank T. Alenghat (Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA) for early versions of the SMRT DAD targeting construct and K. Kaestner for help with gene targeting in C57BL/6 embryonic stem cells. We also acknowledge the Functional Genomics Core of the Penn Diabetes Research Center (DK19525), directed by K. Kaestner and J. Schug, for next generation sequencing.

Author information

Authors and Affiliations

Authors

Contributions

S.-H.Y. and M.A.L. conceived of the hypothesis and designed the experiments. S.-H.Y., Z.S. and M.B. performed the experiments. H.-W.L. and K.-J.W. analyzed bioinformatics data. S.-H.Y., Z.S. and M.A.L. analyzed and interpreted the data. S.-H.Y. and M.A.L. wrote the manuscript.

Corresponding author

Correspondence to Mitchell A Lazar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 423 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, SH., Lim, HW., Sun, Z. et al. Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat Struct Mol Biol 20, 182–187 (2013). https://doi.org/10.1038/nsmb.2476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2476

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing