Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of microRNA processing and expression through RNA editing by ADAR deaminases

Abstract

Adenosine deaminases acting on RNA (ADARs) are involved in editing of adenosine residues to inosine in double-stranded RNA (dsRNA). Although this editing recodes and alters functions of several mammalian genes, its most common targets are noncoding repeat sequences, indicating the involvement of this editing system in currently unknown functions other than recoding of protein sequences. Here we show that specific adenosine residues of certain microRNA (miRNA) precursors are edited by ADAR1 and ADAR2. Editing of pri–miR-142, the precursor of miRNA-142, expressed in hematopoietic tissues, resulted in suppression of its processing by Drosha. The edited pri–miR-142 was degraded by Tudor-SN, a component of RISC and also a ribonuclease specific to inosine-containing dsRNAs. Consequently, mature miRNA-142 expression levels increased substantially in ADAR1 null or ADAR2 null mice. Our results demonstrate a new function of RNA editing in the control of miRNA biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A → I RNA editing of pri-miR RNAs by ADAR.
Figure 2: Analysis of pri–miR-142 processing in HEK293 cells.
Figure 3: In vitro processing of pri–miR-142 RNAs by miRNA processor complexes.
Figure 4: Suppression of pri–miR-142 processing in HEK293 cells transfected with ADAR expression plasmids.
Figure 5: Degradation of highly edited pri–miR-142 RNAs by TSN.
Figure 6: Increased expression levels of miR-142 RNAs in spleen and thymus of ADAR null mice.

Similar content being viewed by others

References

  1. Bass, B.L. & Weintraub, H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55, 1089–1098 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Wagner, R.W., Smith, J.E., Cooperman, B.S. & Nishikura, K. A double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc. Natl. Acad. Sci. USA 86, 2647–2651 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Masquida, B. & Westhof, E. On the wobble GoU and related pairs. RNA 6, 9–15 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Keegan, L.P., Gallo, A. & O'Connell, M.A. The many roles of an RNA editor. Nat. Rev. Genet. 2, 869–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Patterson, J.B. & Samuel, C.E. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol. Cell. Biol. 15, 5376–5388 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, U., Wang, Y., Sanford, T., Zeng, Y. & Nishikura, K. Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc. Natl. Acad. Sci. USA 91, 11457–11461 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lai, F., Drakas, R. & Nishikura, K. Mutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts. J. Biol. Chem. 270, 17098–17105 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Melcher, T. et al. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J. Biol. Chem. 271, 31795–31798 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Melcher, T. et al. A mammalian RNA editing enzyme. Nature 379, 460–464 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Burns, C.M. et al. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387, 303–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Higuchi, M. et al. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75, 1361–1370 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Hoopengardner, B., Bhalla, T., Staber, C. & Reenan, R. Nervous system targets of RNA editing identified by comparative genomics. Science 301, 832–836 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Lomeli, H. et al. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266, 1709–1713 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Hartner, J.C. et al. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 279, 4894–4902 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, Q. et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 279, 4952–4961 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Cho, D.S. et al. Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J. Biol. Chem. 278, 17093–17102 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Athanasiadis, A., Rich, A. & Maas, S. Widespread A → I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim, D.D. et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Levanon, E.Y. et al. Systematic identification of abundant A → I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Nishikura, K. Editing the message from A to I. Nat. Biotechnol. 22, 962–963 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A. & Tuschl, T. New microRNAs from mouse and human. RNA 9, 175–179 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B. & Bartel, D.P. Vertebrate microRNA genes. Science 299, 1540 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Zeng, Y., Yi, R. & Cullen, B.R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24, 138–148 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Denli, A.M., Tops, B.B., Plasterk, R.H., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14, 2162–2167 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Chendrimada, T.P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Förstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Wienholds, E. & Plasterk, R.H. MicroRNA function in animal development. FEBS Lett. 579, 5911–5922 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Chen, C.Z., Li, L., Lodish, H.F. & Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, W. et al. ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. J. Biol. Chem. 280, 3946–3953 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Scadden, A.D. & O'Connell, M.A. Cleavage of dsRNAs hyper-edited by ADARs occurs at preferred editing sites. Nucleic Acids Res. 22, 5954–5964 (2005).

    Article  Google Scholar 

  40. Caudy, A.A. et al. A micrococcal nuclease homologue in RNAi effector complexes. Nature 425, 411–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Scadden, A.D. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat. Struct. Mol. Biol. 12, 489–496 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Luciano, D.J., Mirsky, H., Vendetti, N.J. & Maas, S. RNA editing of a miRNA precursor. RNA 10, 1174–1177 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeng, Y. & Cullen, B.R. Sequence requirements for micro RNA processing and function in human cells. RNA 9, 112–123 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Griffiths-Jones, S. The microRNA Registry. Nucleic Acids Res. 32, D109–D111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bass, B.L. Double-stranded RNA as a template for gene silencing. Cell 101, 235–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Scadden, A.D. & Smith, C.W. RNAi is antagonized by A → I hyper-editing. EMBO Rep. 2, 1107–1111 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tonkin, L.A. & Bass, B.L. Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302, 1725 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dabiri, G.A., Lai, F., Drakas, R.A. & Nishikura, K. Editing of the GLuR-B ion channel RNA in vitro by recombinant double-stranded RNA adenosine deaminase. EMBO J. 15, 34–45 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rickert, R.C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.M. Murray for critical reading of the manuscript and J.T. Lee for excellent technical assistance. This work was supported in part by grants from the US National Institutes of Health, the March of Dimes and the Commonwealth Universal Research Enhancement Program of the Pennsylvania Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuko Nishikura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Differential detection of unedited and edited pri-miR-142 RNAs by the primer extension assay. (PDF 341 kb)

Supplementary Fig. 2

Detection of endogenous and recombinant ADAR and miRNA processing enzymes in transfected HEK293 cells. (PDF 465 kb)

Supplementary Fig. 3

Preparation of mammalian TSN proteins. (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Chendrimada, T., Wang, Q. et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13, 13–21 (2006). https://doi.org/10.1038/nsmb1041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1041

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing