Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The hybrid state of tRNA binding is an authentic translation elongation intermediate

Abstract

The GTPase elongation factor (EF)-G is responsible for promoting the translocation of the messenger RNA–transfer RNA complex on the ribosome, thus opening up the A site for the next aminoacyl-tRNA. Chemical modification and cryo-EM studies have indicated that tRNAs can bind the ribosome in an alternative 'hybrid' state after peptidyl transfer and before translocation, though the relevance of this state during translation elongation has been a subject of debate. Here, using pre–steady-state kinetic approaches and mutant analysis, we show that translocation by EF-G is most efficient when tRNAs are bound in a hybrid state, supporting the argument that this state is an authentic intermediate during translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic drawing of relationship between pre- and post-translocation state ribosomes and of known rRNA–tRNA pairing interactions.
Figure 2: Toeprinting analysis of sparsomycin- and EF-G–mediated translocation on m301 messenger RNA.
Figure 3: Analysis of sparsomycin-mediated translocation and puromycin reactivity of pretranslocation ribosome complexes carrying initiator and elongator tRNAMet.
Figure 4: Pre–steady-state kinetic analysis of EF-G–mediated translocation.

Similar content being viewed by others

References

  1. Cochella, L. & Green, R. An active role for tRNA in decoding beyond codon:anticodon pairing. Science 308, 1178–1180 (2005).

    Article  CAS  Google Scholar 

  2. Weinger, J.S., Parnell, K.M., Dorner, S., Green, R. & Strobel, S.A. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat. Struct. Mol. Biol. 11, 1101–1106 (2004).

    Article  CAS  Google Scholar 

  3. Piepenburg, O. et al. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry 39, 1734–1738 (2000).

    Article  CAS  Google Scholar 

  4. Rheinberger, H.J., Sternbach, H. & Nierhaus, K.H. Three tRNA binding sites on Escherichia coli ribosomes. Proc. Natl. Acad. Sci. USA 78, 5310–5314 (1981).

    Article  CAS  Google Scholar 

  5. Bretscher, M.S. Translocation in protein synthesis: a hybrid structure model. Nature 218, 675–677 (1968).

    Article  CAS  Google Scholar 

  6. Hardesty, B., Odom, O.W. & Deng, H.-Y. in The Structure, Function and Genetics of Ribosomes (eds. Hardesty, B. & Kramer, G.) 495–508 (Springer-Verlag, New York, USA, 1986).

    Google Scholar 

  7. Moazed, D. & Noller, H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    Article  CAS  Google Scholar 

  8. Yusupov, M.M. et al. Crystal structure of the ribosome at 5.5 A resolution. Science 292, 883–896 (2001).

    Article  CAS  Google Scholar 

  9. Agrawal, R.K. et al. Effect of buffer conditions on the position of tRNA on the 70 S ribosome as visualized by cryoelectron microscopy. J. Biol. Chem. 274, 8723–8729 (1999).

    Article  CAS  Google Scholar 

  10. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  Google Scholar 

  11. Lill, R., Robertson, J.M. & Wintermeyer, W. Binding of the 3′ terminus of tRNA to 23S rRNA in the ribosomal exit site actively promotes translocation. EMBO J. 8, 3933–3938 (1989).

    Article  CAS  Google Scholar 

  12. Semenkov, Y.P., Rodnina, M.V. & Wintermeyer, W. Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome. Nat. Struct. Biol. 7, 1027–1031 (2000).

    Article  CAS  Google Scholar 

  13. Sharma, D., Southworth, D.R. & Green, R. EF-G-independent reactivity of a pre-translocation state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. RNA 10, 102–113 (2004).

    Article  CAS  Google Scholar 

  14. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  15. Samaha, R.R., Green, R. & Noller, H.F. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 377, 309–314 (1995).

    Article  CAS  Google Scholar 

  16. Kim, D.F. & Green, R. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol. Cell 4, 859–864 (1999).

    Article  CAS  Google Scholar 

  17. Fredrick, K. & Noller, H.F. Catalysis of ribosomal translocation by sparsomycin. Science 300, 1159–1162 (2003).

    Article  CAS  Google Scholar 

  18. Hansen, J.L., Schmeing, T.M., Moore, P.B. & Steitz, T.A. Structural insights into peptide bond formation. Proc. Natl. Acad. Sci. USA 99, 11670–11675 (2002).

    Article  CAS  Google Scholar 

  19. Monro, R.E., Celma, M.L. & Vazquez, D. Action of sparsomycin on ribosome-catalysed peptidyl transfer. Nature 222, 356–358 (1969).

    Article  CAS  Google Scholar 

  20. Southworth, D.R. & Green, R. Ribosomal translocation: sparsomycin pushes the button. Curr. Biol. 13, R652–R654 (2003).

    Article  CAS  Google Scholar 

  21. Hartz, D., McPheeters, D.S., Traut, R. & Gold, L. Extension inhibition analysis of translation initiation complexes. Methods Enzymol. 164, 419–425 (1988).

    Article  CAS  Google Scholar 

  22. Jerinic, O. & Joseph, S. Conformational changes in the ribosome induced by translational miscoding agents. J. Mol. Biol. 304, 707–713 (2000).

    Article  CAS  Google Scholar 

  23. Fredrick, K. & Noller, H.F. Accurate translocation of mRNA by the ribosome requires a peptidyl group or its analog on the tRNA moving into the 30S P site. Mol. Cell 9, 1125–1131 (2002).

    Article  CAS  Google Scholar 

  24. Youngman, E.M., Brunelle, J.L., Kochaniak, A.B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004).

    Article  CAS  Google Scholar 

  25. Green, R., Samaha, R.R. & Noller, H.F. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. J. Mol. Biol. 266, 40–50 (1997).

    Article  CAS  Google Scholar 

  26. Studer, S.M., Feinberg, J.S. & Joseph, S. Rapid kinetic analysis of EF-G-dependent mRNA translocation in the ribosome. J. Mol. Biol. 327, 369–381 (2003).

    Article  CAS  Google Scholar 

  27. Milligan, J.F., Groebe, D.R., Witherell, G.W. & Uhlenbeck, O.C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  28. Laursen, B.S., Sorensen, H.P., Mortensen, K.K. & Sperling-Petersen, H.U. Initiation of protein synthesis in bacteria. Microbiol. Mol. Biol. Rev. 69, 101–123 (2005).

    Article  CAS  Google Scholar 

  29. RajBhandary, U.L. Initiator transfer RNAs. J. Bacteriol. 176, 547–552 (1994).

    Article  CAS  Google Scholar 

  30. Peske, F., Savelsbergh, A., Katunin, V.I., Rodnina, M.V. & Wintermeyer, W. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J. Mol. Biol. 343, 1183–1194 (2004).

    Article  CAS  Google Scholar 

  31. Savelsbergh, A. et al. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol. Cell 11, 1517–1523 (2003).

    Article  CAS  Google Scholar 

  32. Czworkowski, J. & Moore, P.B. The conformational properties of elongation factor G and the mechanism of translocation. Biochemistry 36, 10327–10334 (1997).

    Article  CAS  Google Scholar 

  33. Zavialov, A.V., Hauryliuk, V.V. & Ehrenberg, M. Guanine-nucleotide exchange on ribosome-bound elongation factor G initiates the translocation of tRNAs. J. Biol. 4, 9 (2005).

    Article  Google Scholar 

  34. Blanchard, S.C., Kim, H.D., Gonzalez, R.L., Jr., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    Article  CAS  Google Scholar 

  35. Katunin, V.I., Savelsbergh, A., Rodnina, M.V. & Wintermeyer, W. Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. Biochemistry 41, 12806–12812 (2002).

    Article  CAS  Google Scholar 

  36. Mohr, D., Wintermeyer, W. & Rodnina, M.V. GTPase activation of elongation factors Tu and G on the ribosome. Biochemistry 41, 12520–12528 (2002).

    Article  CAS  Google Scholar 

  37. Rodnina, M.V., Savelsbergh, A., Katunin, V.I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997).

    Article  CAS  Google Scholar 

  38. Youngman, E.M. & Green, R. Affinity purification of in vivo-assembled ribosomes for in vitro biochemical analysis. Methods 36, 305–312 (2005).

    Article  CAS  Google Scholar 

  39. Sampson, J., DiRenzo, A., Behlen, L. & Uhlenbeck, O. Nucleotides in yeast tRNAPhe required for the specific recognition by its cognate synthetase. Science 243, 1363–1366 (1989).

    Article  CAS  Google Scholar 

  40. Dubnoff, J.S. & Mairtra, U. Isolation and properties of protein factors involved in polypeptide chain initiation in Escherichia coli. Methods Enzymol. 20, 248–261 (1971).

    Article  Google Scholar 

  41. Moazed, D. & Noller, H.F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell 57, 585–597 (1989).

    Article  CAS  Google Scholar 

  42. Brunelle, J.L., Youngman, E.M., Sharma, D. & Green, R. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. RNA 12, 33–39 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Merryman and other members of the lab for discussions, J. Lorsch (Johns Hopkins University) for critical reading of the manuscript and support with our kinetic studies on the ribosome, K. Fredrick (The Ohio State University) for the m301 plasmid, S. Blanchard (Cornell University) for the EF-G construct and O. Uhlenbeck (Northwestern University) for plasmid p67CF10. The work was supported by an Erwin Schrödinger fellowship (J2172) from the Austrian Science Foundation to S.D., by the US National Institutes of Health and by salary support from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sparsomycin-mediated translocation of G2251 and G2252 mutant ribosomes. (PDF 272 kb)

Supplementary Fig. 2

Comparison of native and transcribed initiator tRNAs. (PDF 106 kb)

Supplementary Fig. 3

FPLC analysis of GDP contamination in GTP. (PDF 135 kb)

Supplementary Fig. 4

K1/2 for EF-G on various ribosomal complexes. (PDF 90 kb)

Supplementary Table 1

Hybrid reactivity of dipeptidyl tRNA complexes with puromycin (PDF 68 kb)

Supplementary Table 2

EF-G dependent translocation with GTP, GTP or GTP/GDP (PDF 67 kb)

Supplementary Table 3

EF-G dependent translocation with/without energy regeneration system (PDF 82 kb)

Supplementary Methods

Primer for PCR of tRNAs (PDF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorner, S., Brunelle, J., Sharma, D. et al. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat Struct Mol Biol 13, 234–241 (2006). https://doi.org/10.1038/nsmb1060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing