Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The exocyst defrocked, a framework of rods revealed

Abstract

The exocyst complex is required for the interaction of vesicles with the plasma membrane in preparation for exocytic fusion. Recent crystallographic studies indicate that at least four of the eight subunits contain long, rod-like domains formed from helical bundles. These rods may pack against one another to generate the framework of the complex. How this complex assembles, how it responds to various GTPases and how it is ultimately displaced to allow bilayer fusion are key questions for the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The function of the exocyst is localized to sites of active secretion in eukaryotic cells.
Figure 2: Exocyst subunit structures.
Figure 3: A model for the assembled exocyst complex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lee, M.C., Miller, E.A., Goldberg, J., Orci, L. & Schekman, R. Bi-directional protein transport between the ER and Golgi. Annu. Rev. Cell Dev. Biol. 20, 87–123 (2004).

    Article  CAS  Google Scholar 

  2. Sollner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  CAS  Google Scholar 

  3. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  4. Guo, W., Sacher, M., Barrowman, J., Ferro-Novick, S. & Novick, P. Protein complexes in transport vesicle targeting. Trends Cell Biol. 10, 251–255 (2000).

    Article  CAS  Google Scholar 

  5. Whyte, J.R. & Munro, S. Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115, 2627–2637 (2002).

    CAS  PubMed  Google Scholar 

  6. Dong, G., Hutagalung, A.H., Fu, C., Novick, P. & Reinisch, K.M. The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat. Struct. Mol. Biol. 12, 1094–1100 (2005).

    Article  CAS  Google Scholar 

  7. Hamburger, Z.A., Hamburger, A.E., West, A.P. Jr. & Weis, W.I. Crystal Structure of the S. cerevisiae Exocyst Component Exo70p. J. Mol. Biol. 356, 9–21 (2006).

    Article  CAS  Google Scholar 

  8. Wu, S., Mehta, S.Q., Pichaud, F., Bellen, H.J. & Quiocho, F.A. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat. Struct. Mol. Biol. 12, 879–885 (2005).

    Article  CAS  Google Scholar 

  9. Sivaram, M.V., Furgason, M.L., Brewer, D.N. & Munson, M. The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat. Struct. Mol. Biol. 13, 555–556 (2006).

    Article  CAS  Google Scholar 

  10. TerBush, D.R., Maurice, T., Roth, D. & Novick, P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).

    Article  CAS  Google Scholar 

  11. Kee, Y. et al. Subunit structure of the mammalian exocyst complex. Proc. Natl Acad. Sci. USA 94, 14438–14443 (1997).

    Article  CAS  Google Scholar 

  12. Walch-Solimena, C., Collins, R.N. & Novick, P.J. Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J. Cell Biol. 137, 1495–1509 (1997).

    Article  CAS  Google Scholar 

  13. Grote, E., Carr, C.M. & Novick, P.J. Ordering the final events in yeast exocytosis. J. Cell Biol. 151, 439–452 (2000).

    Article  CAS  Google Scholar 

  14. Boyd, C., Hughes, T., Pypaert, M. & Novick, P. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. J. Cell Biol. 167, 889–901 (2004).

    Article  CAS  Google Scholar 

  15. Finger, F.P., Hughes, T.E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559–571 (1998).

    Article  CAS  Google Scholar 

  16. Roumanie, O. et al. Rho GTPase regulation of exocytosis in yeast is independent of GTP hydrolysis and polarization of the exocyst complex. J. Cell Biol. 170, 583–594 (2005).

    Article  CAS  Google Scholar 

  17. Sivaram, M.V., Saporita, J.A., Furgason, M.L., Boettcher, A.J. & Munson, M. Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p. Biochemistry 44, 6302–6311 (2005).

    Article  CAS  Google Scholar 

  18. Wiederkehr, A., De Craene, J.O., Ferro-Novick, S. & Novick, P. Functional specialization within a vesicle tethering complex: bypass of a subset of exocyst deletion mutants by Sec1p or Sec4p. J. Cell Biol. 167, 875–887 (2004).

    Article  CAS  Google Scholar 

  19. Zhang, X. et al. Lethal giant larvae proteins interact with the exocyst complex and are involved in polarized exocytosis. J. Cell Biol. 170, 273–283 (2005).

    Article  CAS  Google Scholar 

  20. Hsu, S.C. et al. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 20, 1111–1122 (1998).

    Article  CAS  Google Scholar 

  21. Grindstaff, K.K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    Article  CAS  Google Scholar 

  22. Lalli, G. & Hall, A. Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex. J. Cell Biol. 171, 857–869 (2005).

    Article  CAS  Google Scholar 

  23. Murthy, M., Garza, D., Scheller, R.H. & Schwarz, T.L. Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37, 433–447 (2003).

    Article  CAS  Google Scholar 

  24. Mehta, S.Q. et al. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Neuron 46, 219–232 (2005).

    Article  CAS  Google Scholar 

  25. Prigent, M. et al. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J. Cell Biol. 163, 1111–1121 (2003).

    Article  CAS  Google Scholar 

  26. Sommer, B., Oprins, A., Rabouille, C. & Munro, S. The exocyst component Sec5 is present on endocytic vesicles in the oocyte of Drosophila melanogaster. J. Cell Biol. 169, 953–963 (2005).

    Article  CAS  Google Scholar 

  27. Jafar-Nejad, H. et al. Sec15, a component of the exocyst, promotes notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev. Cell 9, 351–363 (2005).

    Article  CAS  Google Scholar 

  28. Folsch, H., Pypaert, M., Maday, S., Pelletier, L. & Mellman, I. The AP-1A and AP-1B clathrin adaptor complexes define biochemically and functionally distinct membrane domains. J. Cell Biol. 163, 351–362 (2003).

    Article  Google Scholar 

  29. Wang, H. et al. The multiprotein exocyst complex is essential for cell separation in Schizosaccharomyces pombe. Mol. Biol. Cell 13, 515–529 (2002).

    Article  CAS  Google Scholar 

  30. Gromley, A. et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123, 75–87 (2005).

    Article  CAS  Google Scholar 

  31. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).

    Article  CAS  Google Scholar 

  32. Guo, W., Tamanoi, F. & Novick, P. Spatial regulation of the exocyst complex by Rho1 GTPase. Nat. Cell Biol. 3, 353–360 (2001).

    Article  CAS  Google Scholar 

  33. Zhang, X. et al. Cdc42 interacts with the exocyst and regulates polarized secretion. J. Biol. Chem. 276, 46745–46750 (2001).

    Article  CAS  Google Scholar 

  34. Robinson, N.G. et al. Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol. Cell. Biol. 19, 3580–3587 (1999).

    Article  CAS  Google Scholar 

  35. Adamo, J.E., Rossi, G. & Brennwald, P. The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol. Biol. Cell 10, 4121–4133 (1999).

    Article  CAS  Google Scholar 

  36. Zhang, X.M., Ellis, S., Sriratana, A., Mitchell, C.A. & Rowe, T. Sec15 is an effector for the Rab11 GTPase in mammalian cells. J. Biol. Chem. 279, 43027–43034 (2004).

    Article  CAS  Google Scholar 

  37. Inoue, M., Chang, L., Hwang, J., Chiang, S.H. & Saltiel, A.R. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature 422, 629–633 (2003).

    Article  CAS  Google Scholar 

  38. Jin, R. et al. Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. EMBO J. 24, 2064–2074 (2005).

    Article  CAS  Google Scholar 

  39. Shipitsin, M. & Feig, L.A. RalA but not RalB enhances polarized delivery of membrane proteins to the basolateral surface of epithelial cells. Mol. Cell. Biol. 24, 5746–5756 (2004).

    Article  CAS  Google Scholar 

  40. Moskalenko, S. et al. Ral GTPases regulate exocyst assembly through dual subunit interactions. J. Biol. Chem. 278, 51743–51748 (2003).

    Article  CAS  Google Scholar 

  41. Wang, L., Li, G. & Sugita, S. RalA-exocyst interaction mediates GTP-dependent exocytosis. J. Biol. Chem. 279, 19875–19881 (2004).

    Article  CAS  Google Scholar 

  42. Fukai, S., Matern, H.T., Jagath, J.R., Scheller, R.H. & Brunger, A.T. Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex. EMBO J. 22, 3267–3278 (2003).

    Article  CAS  Google Scholar 

  43. Whyte, J.R. & Munro, S. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1, 527–537 (2001).

    Article  CAS  Google Scholar 

  44. Mott, H.R. et al. Structure of the GTPase-binding domain of Sec5 and elucidation of its Ral binding site. J. Biol. Chem. 278, 17053–17059 (2003).

    Article  CAS  Google Scholar 

  45. Matern, H.T., Yeaman, C., Nelson, W.J. & Scheller, R.H. The Sec6/8 complex in mammalian cells: characterization of mammalian Sec3, subunit interactions, and expression of subunits in polarized cells. Proc. Natl Acad. Sci. USA 98, 9648–9653 (2001).

    Article  CAS  Google Scholar 

  46. Guo, W., Grant, A. & Novick, P. Exo84p is an exocyst protein essential for secretion. J. Biol. Chem. 274, 23558–23564 (1999).

    Article  CAS  Google Scholar 

  47. Moskalenko, S. et al. The exocyst is a Ral effector complex. Nat. Cell Biol. 4, 66–72 (2002).

    Article  CAS  Google Scholar 

  48. Sugihara, K. et al. The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat. Cell Biol. 4, 73–78 (2002).

    Article  CAS  Google Scholar 

  49. Vega, I.E. & Hsu, S.C. The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J. Neurosci. 21, 3839–3848 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Reinisch and W. Kobertz for critical reading of this manuscript. This work was supported by grants from the US National Institutes of Heath to P.N. (GM35370 and CA46128) and M.M. (GM068803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mary Munson or Peter Novick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munson, M., Novick, P. The exocyst defrocked, a framework of rods revealed. Nat Struct Mol Biol 13, 577–581 (2006). https://doi.org/10.1038/nsmb1097

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing