Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions

Abstract

We use Caenorhabditis elegans to test proposed general rules for microRNA (miRNA)-target interactions. We show that G·U base pairing is tolerated in the 'seed' region of the lsy-6 miRNA interaction with its in vivo target cog-1, and that 6- to 8-base-pair perfect seed pairing is not a generally reliable predictor for an interaction of lsy-6 with a 3′ untranslated region (UTR). Rather, lsy-6 can functionally interact with its target site only in specific 3′ UTR contexts. Our findings illustrate the difficulty of establishing generalizable rules of miRNA-target interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Responsiveness of various 3′ UTRs to lsy-6.
Figure 2: lsy-6 responsiveness of G·U-wobbled 3′ UTRs and predicted lsy-6 target 3′ UTRs, represented as in Figure 1.

Similar content being viewed by others

References

  1. Lee, R.C., Feinbaum, R.L. & Ambros, V. Cell 75, 843–854 (1993).

    Article  CAS  Google Scholar 

  2. Wightman, B., Ha, I. & Ruvkun, G. Cell 75, 855–862 (1993).

    Article  CAS  Google Scholar 

  3. Ambros, V. Nature 431, 350–355 (2004).

    Article  CAS  Google Scholar 

  4. Carthew, R.W. Curr. Opin. Genet. Dev. 16, 203–208 (2006).

    Article  CAS  Google Scholar 

  5. Ambros, V. & Horvitz, H.R. Science 226, 409–416 (1984).

    Article  CAS  Google Scholar 

  6. Johnston, R.J. & Hobert, O. Nature 426, 845–849 (2003).

    Article  CAS  Google Scholar 

  7. Slack, F.J. et al. Mol. Cell 5, 659–669 (2000).

    Article  CAS  Google Scholar 

  8. Rajewsky, N. Nat. Genet. 38 Suppl. 1, S8–S13 (2006).

    Article  CAS  Google Scholar 

  9. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Cell 115, 787–798 (2003).

    Article  CAS  Google Scholar 

  10. Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. PLoS Biol. 3, e85 (2005).

    Article  Google Scholar 

  11. Krek, A. et al. Nat. Genet. 37, 495–500 (2005).

    Article  CAS  Google Scholar 

  12. Doench, J.G. & Sharp, P.A. Genes Dev. 18, 504–511 (2004).

    Article  CAS  Google Scholar 

  13. Lewis, B.P., Burge, C.B. & Bartel, D.P. Cell 120, 15–20 (2005).

    Article  CAS  Google Scholar 

  14. Lim, L.P. et al. Nature 433, 769–773 (2005).

    Article  CAS  Google Scholar 

  15. Jackson, A.L. et al. RNA 12, 1179–1187 (2006).

    Article  CAS  Google Scholar 

  16. Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Cell 123, 1133–1146 (2005).

    Article  CAS  Google Scholar 

  17. Farh, K.K. et al. Science 310, 1817–1821 (2005).

    Article  CAS  Google Scholar 

  18. Hornstein, E. & Shomron, N. Nat. Genet. 38 Suppl. 1, S20–S24 (2006).

    Article  CAS  Google Scholar 

  19. Vella, M.C., Choi, E.Y., Lin, S.Y., Reinert, K. & Slack, F.J. Genes Dev. 18, 132–137 (2004).

    Article  CAS  Google Scholar 

  20. Moss, E.G., Lee, R.C. & Ambros, V. Cell 88, 637–646 (1997).

    Article  CAS  Google Scholar 

  21. Cha-Molstad, H., Keller, D.M., Yochum, G.S., Impey, S. & Goodman, R.H. Proc. Natl. Acad. Sci. USA 101, 13572–13577 (2004).

    Article  CAS  Google Scholar 

  22. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. RNA 10, 1507–1517 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Chen for expert technical assistance in generating transgenic strains, N. Rajewsky for stimulating discussions, I. Rigoutsos for suggestions about target predictions and R. Mann, F. Slack, I. Greenwald, P. Sengupta, I. Rigoutsos and N. Rajewsky for comments on the manuscript. This work was funded, in part, by US National Institutes of Health grants 1R03HD050334-01 and 5R01NS050266-02, a predoctoral US National Institutes of Health fellowship to D.D. and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Hobert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

lsy-6 responsiveness of predicted lsy-6 target 3′ UTRs. (PDF 115 kb)

Supplementary Fig. 2

Conservation of seed matches to lsy-6 from C. elegans to C. briggsae. (PDF 114 kb)

Supplementary Table 1

Primers and transgenic arrays. (PDF 59 kb)

Supplementary Methods (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didiano, D., Hobert, O. Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol 13, 849–851 (2006). https://doi.org/10.1038/nsmb1138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing