Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit

Abstract

The trimeric influenza virus polymerase, comprising subunits PA, PB1 and PB2, is responsible for transcription and replication of the segmented viral RNA genome. Using a novel library-based screening technique called expression of soluble proteins by random incremental truncation (ESPRIT), we identified an independently folded C-terminal domain from PB2 and determined its solution structure by NMR. Using green fluorescent protein fusions, we show that both the domain and the full-length PB2 subunit are efficiently imported into the nucleus dependent on a previously overlooked bipartite nuclear localization sequence (NLS). The crystal structure of the domain complexed with human importin α5 shows how the last 20 residues unfold to permit binding to the import factor. The domain contains three surface residues implicated in adaptation from avian to mammalian hosts. One of these tethers the NLS-containing peptide to the core of the domain in the unbound state.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and solution NMR structure of PB2 C-terminal domain.
Figure 2: Nuclear import of PB2 C-terminal domain and full-length PB2 subunit is directed by a bipartite NLS.
Figure 3: X-ray structure of the PB2 C-terminal domain complexed with importin α5.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Noah, D.L. & Krug, R.M. Influenza virus virulence and its molecular determinants. Adv. Virus Res. 65, 121–145 (2005).

    Article  CAS  Google Scholar 

  2. Jung, T.E. & Brownlee, G.G. A new promoter-binding site in the PB1 subunit of the influenza A virus polymerase. J. Gen. Virol. 87, 679–688 (2006).

    Article  CAS  Google Scholar 

  3. Li, M.L., Ramirez, B.C. & Krug, R.M. RNA-dependent activation of primer RNA production by influenza virus polymerase: different regions of the same protein subunit constitute the two required RNA-binding sites. EMBO J. 17, 5844–5852 (1998).

    Article  CAS  Google Scholar 

  4. Gonzalez, S. & Ortin, J. Characterization of influenza virus PB1 protein binding to viral RNA: two separate regions of the protein contribute to the interaction domain. J. Virol. 73, 631–637 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, M.L., Rao, P. & Krug, R.M. The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J. 20, 2078–2086 (2001).

    Article  CAS  Google Scholar 

  6. Honda, A., Mizumoto, K. & Ishihama, A. Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells 4, 475–485 (1999).

    Article  CAS  Google Scholar 

  7. Fechter, P. et al. Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. J. Biol. Chem. 278, 20381–20388 (2003).

    Article  CAS  Google Scholar 

  8. Nath, S.T. & Nayak, D.P. Function of two discrete regions is required for nuclear localization of polymerase basic protein 1 of A/WSN/33 influenza virus (H1 N1). Mol. Cell. Biol. 10, 4139–4145 (1990).

    Article  CAS  Google Scholar 

  9. Mukaigawa, J. & Nayak, D.P. Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2. J. Virol. 65, 245–253 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nieto, A. et al. Nuclear transport of influenza virus polymerase PA protein. Virus Res. 24, 65–75 (1992).

    Article  CAS  Google Scholar 

  11. Fodor, E. & Smith, M. The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J. Virol. 78, 9144–9153 (2004).

    Article  CAS  Google Scholar 

  12. Deng, T. et al. Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J. Virol. 80, 11911–11919 (2006).

    Article  CAS  Google Scholar 

  13. Naito, T., Momose, F., Kawaguchi, A. & Nagata, K. Involvement of hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J. Virol. 81, 1339–1349 (2007).

    Article  CAS  Google Scholar 

  14. Russell, C.J. & Webster, R.G. The genesis of a pandemic influenza virus. Cell 123, 368–371 (2005).

    Article  CAS  Google Scholar 

  15. Li, Z. et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J. Virol. 79, 12058–12064 (2005).

    Article  CAS  Google Scholar 

  16. Taubenberger, J.K. et al. Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–893 (2005).

    Article  CAS  Google Scholar 

  17. Gabriel, G. et al. The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc. Natl. Acad. Sci. USA 102, 18590–18595 (2005).

    Article  CAS  Google Scholar 

  18. Salomon, R. et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04. J. Exp. Med. 203, 689–697 (2006).

    Article  CAS  Google Scholar 

  19. Martin-Benito, J. et al. Three-dimensional reconstruction of a recombinant influenza virus ribonucleoprotein particle. EMBO Rep. 2, 313–317 (2001).

    Article  CAS  Google Scholar 

  20. Area, E. et al. 3D structure of the influenza virus polymerase complex: localization of subunit domains. Proc. Natl. Acad. Sci. USA 101, 308–313 (2004).

    Article  CAS  Google Scholar 

  21. Ostermeier, M. & Lutz, S. The creation of ITCHY hybrid protein libraries. Methods Mol. Biol. 231, 129–141 (2003).

    CAS  PubMed  Google Scholar 

  22. Beckett, D., Kovaleva, E. & Schatz, P.J. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci. 8, 921–929 (1999).

    Article  CAS  Google Scholar 

  23. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  24. Perales, B., de la Luna, S., Palacios, I. & Ortin, J. Mutational analysis identifies functional domains in the influenza A virus PB2 polymerase subunit. J. Virol. 70, 1678–1686 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fontes, M.R., Teh, T., Jans, D., Brinkworth, R.I. & Kobe, B. Structural basis for the specificity of bipartite nuclear localization sequence binding by importin-alpha. J. Biol. Chem. 278, 27981–27987 (2003).

    Article  CAS  Google Scholar 

  26. Zacksenhaus, E., Bremner, R., Phillips, R.A. & Gallie, B.L. A bipartite nuclear localization signal in the retinoblastoma gene product and its importance for biological activity. Mol. Cell. Biol. 13, 4588–4599 (1993).

    Article  CAS  Google Scholar 

  27. Conti, E. & Kuriyan, J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Structure 8, 329–338 (2000).

    Article  CAS  Google Scholar 

  28. de Jong, M.D. et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12, 1203–1207 (2006).

    Article  CAS  Google Scholar 

  29. de la Luna, S., Martinez, C. & Ortin, J. Molecular cloning and sequencing of influenza virus A/Victoria/3/75 polymerase genes: sequence evolution and prediction of possible functional domains. Virus Res. 13, 143–155 (1989).

    Article  CAS  Google Scholar 

  30. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  31. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  32. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  33. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ortin (Centro Nacional de Biotecnologia, CSIC, Madrid) for the pb2 gene, A. Favier (Institut de Biologie Structurale, Grenoble) for NMR scripts and the EMBL Centre for Molecular and Cellular Imaging for suggestions. Screening for crystals was done by the Partnership for Structural Biology high-throughput crystallization facility. We thank the European Synchrotron Radiation Facility and EMBL Joint Structural Biology group for assistance with the synchrotron beamtime and T. Crepin (EMBL, Grenoble) for help with data collection. Partial funding was provided by the European Commission Framework 5 Integrated Project 'Structural Proteomics in Europe' (SPINE, contract QLG-CT-2002-00988).

Author information

Authors and Affiliations

Authors

Contributions

D.J.H. conceived the ESPRIT method. D.J.H., F.T. and P.J.M. implemented ESPRIT. D.G. purified wild-type and mutant DPDE for in vitro binding studies and crystallization and made double-labeled protein for NMR. C.M.B., J.B. and J.-P.S. performed the NMR measurements and structural analysis. S.B. purified importin α5 under the supervision of F.B. and cocrystallized it with DPDE. R.W.H.R. and S.C. initiated the influenza polymerase project, and S.C. determined the crystallographic structure. F.T. and N.D. performed nuclear import assays with instrumentation and methodology established by J.E. S.C. and D.J.H. compiled the text, with contributions from all authors.

Corresponding authors

Correspondence to Stephen Cusack or Darren J Hart.

Ethics declarations

Competing interests

The authors have applied for a patent on ESPRIT technology.

Supplementary information

Supplementary Fig. 1

Assigned 1H-15N HSQC spectrum of the C-terminal domain of PB2 at 10 °C (PDF 101 kb)

Supplementary Fig. 2

Plot of r.m.s. deviation and S2 generalized order parameters against primary sequence (PDF 61 kb)

Supplementary Fig. 3

Interaction of the PB2 C-terminal domain with human importin α5 (PDF 176 kb)

Supplementary Fig. 4

Electron density for the bipartite NLS in the complex of human importin α5 with influenza PB2 DPDE domain (PDF 162 kb)

Supplementary Fig. 5

Interactions of the bipartite NLS with human importin α5 (PDF 142 kb)

Supplementary Table 1

NMR and refinement statistics for PB2 C-terminal domain (PDF 34 kb)

Supplementary Methods (PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarendeau, F., Boudet, J., Guilligay, D. et al. Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol 14, 229–233 (2007). https://doi.org/10.1038/nsmb1212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1212

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing