Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins

Abstract

Most cancer cells activate telomerase to elongate telomeres and achieve unlimited replicative potential. Some cancer cells cannot activate telomerase and use telomere homologous recombination (HR) to elongate telomeres, a mechanism termed alternative lengthening of telomeres (ALT). A hallmark of ALT cells is the recruitment of telomeres to PML bodies (termed APBs). Here, we show that the SMC5/6 complex localizes to APBs in ALT cells and is required for targeting telomeres to APBs. The MMS21 SUMO ligase of the SMC5/6 complex SUMOylates multiple telomere-binding proteins, including TRF1 and TRF2. Inhibition of TRF1 or TRF2 SUMOylation prevents APB formation. Depletion of SMC5/6 subunits by RNA interference inhibits telomere HR, causing telomere shortening and senescence in ALT cells. Thus, the SMC5/6 complex facilitates telomere HR and elongation in ALT cells by promoting APB formation through SUMOylation of telomere-binding proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The SMC5/6 complex localizes to PML nuclear bodies.
Figure 2: Inhibition of the SMC5/6 complex decreases telomere recombination (T-SCE).
Figure 3: The SMC5/6 complex is required for APB formation.
Figure 4: MMS21 SUMOylates the core telomere-binding proteins.
Figure 5: MMS21-induced SUMOylation of telomere-binding proteins is required for APB formation.
Figure 6: Inhibition of the SMC5/6 complex results in telomere shortening and cellular senescence.
Figure 7: Two proposed models for how MMS21-induced shelterin SUMOylation promotes telomere length maintenance in ALT cells.

Similar content being viewed by others

References

  1. Blackburn, E.H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Smogorzewska, A. & de Lange, T. Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73, 177–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Cong, Y.S., Wright, W.E. & Shay, J.W. Human telomerase and its regulation. Microbiol. Mol. Biol. Rev. 66, 407–425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shay, J.W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Bryan, T.M., Englezou, A., Dalla-Pozza, L., Dunham, M.A. & Reddel, R.R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3, 1271–1274 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Henson, J.D. et al. A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin. Cancer Res. 11, 217–225 (2005).

    CAS  PubMed  Google Scholar 

  9. Bryan, T.M., Englezou, A., Gupta, J., Bacchetti, S. & Reddel, R.R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 14, 4240–4248 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muntoni, A. & Reddel, R.R. The first molecular details of ALT in human tumor cells. Hum. Mol. Genet. 14, R191–R196 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Henson, J.D., Neumann, A.A., Yeager, T.R. & Reddel, R.R. Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598–610 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Lundblad, V. & Blackburn, E.H. An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73, 347–360 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Dunham, M.A., Neumann, A.A., Fasching, C.L. & Reddel, R.R. Telomere maintenance by recombination in human cells. Nat. Genet. 26, 447–450 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Londono-Vallejo, J.A., Der-Sarkissian, H., Cazes, L., Bacchetti, S. & Reddel, R.R. Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res. 64, 2324–2327 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Rogan, E.M. et al. Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalization of Li-Fraumeni syndrome fibroblasts. Mol. Cell. Biol. 15, 4745–4753 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yeager, T.R. et al. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 59, 4175–4179 (1999).

    CAS  PubMed  Google Scholar 

  17. Perrem, K., Colgin, L.M., Neumann, A.A., Yeager, T.R. & Reddel, R.R. Coexistence of alternative lengthening of telomeres and telomerase in hTERT-transfected GM847 cells. Mol. Cell. Biol. 21, 3862–3875 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grobelny, J.V., Godwin, A.K. & Broccoli, D. ALT-associated PML bodies are present in viable cells and are enriched in cells in the G(2)/M phase of the cell cycle. J. Cell Sci. 113, 4577–4585 (2000).

    CAS  PubMed  Google Scholar 

  19. Johnson, F.B. et al. The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J. 20, 905–913 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nabetani, A., Yokoyama, O. & Ishikawa, F. Localization of hRad9, hHus1, hRad1, and hRad17 and caffeine-sensitive DNA replication at the alternative lengthening of telomeres-associated promyelocytic leukemia body. J. Biol. Chem. 279, 25849–25857 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Yankiwski, V., Marciniak, R.A., Guarente, L. & Neff, N.F. Nuclear structure in normal and Bloom syndrome cells. Proc. Natl. Acad. Sci. USA 97, 5214–5219 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu, X.D., Kuster, B., Mann, M., Petrini, J.H. & de Lange, T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat. Genet. 25, 347–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Wu, G., Jiang, X., Lee, W.H. & Chen, P.L. Assembly of functional ALT-associated promyelocytic leukemia bodies requires Nijmegen Breakage Syndrome 1. Cancer Res. 63, 2589–2595 (2003).

    CAS  PubMed  Google Scholar 

  24. Jiang, W.Q. et al. Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex. Mol. Cell. Biol. 25, 2708–2721 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirano, T. SMC proteins and chromosome mechanics: from bacteria to humans. Phil. Trans. R. Soc. Lond. B 360, 507–514 (2005).

    Article  CAS  Google Scholar 

  26. Koshland, D.E. & Guacci, V. Sister chromatid cohesion: the beginning of a long and beautiful relationship. Curr. Opin. Cell Biol. 12, 297–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Swedlow, J.R. & Hirano, T. The making of the mitotic chromosome: modern insights into classical questions. Mol. Cell 11, 557–569 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Lehmann, A.R. The role of SMC proteins in the responses to DNA damage. DNA Repair (Amst.) 4, 309–314 (2005).

    Article  CAS  Google Scholar 

  29. Lehmann, A.R. et al. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell. Biol. 15, 7067–7080 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Verkade, H.M., Bugg, S.J., Lindsay, H.D., Carr, A.M. & O'Connell, M.J. Rad18 is required for DNA repair and checkpoint responses in fission yeast. Mol. Biol. Cell 10, 2905–2918 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Torres-Rosell, J. et al. SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat. Cell Biol. 7, 412–419 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, K.M. & O'Connell, M.J. A new SUMO ligase in the DNA damage response. DNA Repair (Amst.) 5, 138–141 (2006).

    Article  Google Scholar 

  33. Muller, S., Hoege, C., Pyrowolakis, G. & Jentsch, S. SUMO, ubiquitin's mysterious cousin. Nat. Rev. Mol. Cell Biol. 2, 202–210 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Potts, P.R. & Yu, H. Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol. Cell. Biol. 25, 7021–7032 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, X. & Blobel, G.A. SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. USA 102, 4777–4782 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Potts, P.R., Porteus, M.H. & Yu, H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 25, 3377–3388 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Piccoli, G. et al. Smc5-Smc6 mediate DNA double-strand-break repair by promoting sister-chromatid recombination. Nat. Cell Biol. 8, 1032–1034 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindroos, H.B. et al. Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. Mol. Cell 22, 755–767 (2006).

    Article  CAS  Google Scholar 

  39. Onoda, F. et al. SMC6 is required for MMS-induced interchromosomal and sister chromatid recombinations in Saccharomyces cerevisiae. DNA Repair (Amst.) 3, 429–439 (2004).

    Article  CAS  Google Scholar 

  40. Wright, W.E., Pereira-Smith, O.M. & Shay, J.W. Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol. Cell. Biol. 9, 3088–3092 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Laud, P.R. et al. Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev. 19, 2560–2570 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 19, 2100–2110 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Gocke, C.B., Yu, H. & Kang, J. Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates. J. Biol. Chem. 280, 5004–5012 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Lin, D.Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24, 341–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Rodriguez, M.S., Dargemont, C. & Hay, R.T. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276, 12654–12659 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Xhemalce, B. et al. Role of SUMO in the dynamics of telomere maintenance in fission yeast. Proc. Natl. Acad. Sci. USA 104, 893–898 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maul, G.G., Negorev, D., Bell, P. & Ishov, A.M. Review: properties and assembly mechanisms of ND10, PML bodies, or PODs. J. Struct. Biol. 129, 278–287 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Borden, K.L. Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies. Mol. Cell. Biol. 22, 5259–5269 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu, G., Lee, W.H. & Chen, P.L. NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J. Biol. Chem. 275, 30618–30622 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Seeler, J.S. & Dejean, A. SUMO: of branched proteins and nuclear bodies. Oncogene 20, 7243–7249 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Ishov, A.M. et al. PML is critical for ND10 formation and recruits the PML-interacting protein daxx to this nuclear structure when modified by SUMO-1. J. Cell Biol. 147, 221–234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ampatzidou, E., Irmisch, A., O'Connell, M.J. & Murray, J.M. Smc5/6 is required for repair at collapsed replication forks. Mol. Cell. Biol. 26, 9387–9401 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Branzei, D. et al. Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127, 509–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Miyabe, I., Morishita, T., Hishida, T., Yonei, S. & Shinagawa, H. Rhp51-dependent recombination intermediates that do not generate checkpoint signal are accumulated in Schizosaccharomyces pombe rad60 and smc5/6 mutants after release from replication arrest. Mol. Cell. Biol. 26, 343–353 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, R.C., Smogorzewska, A. & de Lange, T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119, 355–368 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank W. Wright (University of Texas Southwestern Medical Center) for the SUSM1, SW26 and SW39 cell lines, D. Chen (University of Texas Southwestern Medical Center) for complementary DNAs encoding the telomere-binding proteins, and S. Chang (M.D. Anderson Cancer Center) for G5 Terc−/− Wrn−/− Rasv12 MEF ALT cells. We also thank members of our laboratory and the laboratories of D. Chen and W. Wright for helpful discussions. This work is supported by grants from the W.M. Keck Foundation (to H.Y.) and the Welch Foundation (to H.Y.), and by a US National Institutes of Health Pharmacological Sciences Training Grant (to P.R.P.).

Author information

Authors and Affiliations

Authors

Contributions

P.R.P. and H.Y. designed the research. P.R.P. performed the experiments and analyzed the results. P.R.P. and H.Y. wrote the paper.

Corresponding author

Correspondence to Hongtao Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

SMC5–SMC6 localizes to PML bodies in telomerase–positive HeLa cells, but does in ALT cells (PDF 82 kb)

Supplementary Fig. 2

SMC5–SMC6 localizes to PML bodies in SW26 ALT but not in SW39 telomerase-positive cells (PDF 53 kb)

Supplementary Fig. 3

Cohesin complex does not localize to PML bodies (PDF 77 kb)

Supplementary Fig. 4

MMS21 sumoylates components of the shelterin complex (PDF 90 kb)

Supplementary Fig. 5

TRF2 sumoylation is required for TRF2 recruitment to PML bodies (PDF 90 kb)

Supplementary Fig. 6

Inhibition of the SMC5–SMC6 complex results in telomeric shortening (PDF 104 kb)

Supplementary Table 1

Knockdown of the SMC5–SMC6 complex in ALT cells results in telomere abnormalities (PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potts, P., Yu, H. The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins. Nat Struct Mol Biol 14, 581–590 (2007). https://doi.org/10.1038/nsmb1259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing