Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo dynamics of RNA polymerase II transcription

Abstract

We imaged transcription in living cells using a locus-specific reporter system, which allowed precise, single-cell kinetic measurements of promoter binding, initiation and elongation. Photobleaching of fluorescent RNA polymerase II revealed several kinetically distinct populations of the enzyme interacting with a specific gene. Photobleaching and photoactivation of fluorescent MS2 proteins used to label nascent messenger RNAs provided sensitive elongation measurements. A mechanistic kinetic model that fits our data was validated using specific inhibitors. Polymerases elongated at 4.3 kilobases min−1, much faster than previously documented, and entered a paused state for unexpectedly long times. Transcription onset was inefficient, with only 1% of polymerase-gene interactions leading to completion of an mRNA. Our systems approach, quantifying both polymerase and mRNA kinetics on a defined DNA template in vivo with high temporal resolution, opens new avenues for studying regulation of transcriptional processes in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detecting transcription in vivo using fluorescence microscopy.
Figure 2: Quantifying Pol II transcription kinetics in vivo.
Figure 3: Polymerase II mechanistic kinetic model used to simulate the data.
Figure 4: Diffusion is not a significant factor in the Pol II kinetic model.
Figure 5: The transcription inhibitor DRB specifically affects the slow component.
Figure 6: Quantifying mRNA synthesis in vivo.
Figure 7: Modeling the kinetics of elongation during mRNA synthesis.
Figure 8: Simulations of RNA synthesis curve fitting to test the effects of different pausing percentages and residence times on our model.
Figure 9: Drugs that inhibit elongation affect the kinetics of RNA synthesis in specific ways.

Similar content being viewed by others

References

  1. Moore, M.J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  Google Scholar 

  2. Shilatifard, A., Conaway, R.C. & Conaway, J.W. The RNA polymerase II elongation complex. Annu. Rev. Biochem. 72, 693–715 (2003).

    Article  CAS  Google Scholar 

  3. Cramer, P., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863–1876 (2001).

    Article  CAS  Google Scholar 

  4. Cramer, P. RNA polymerase II structure: from core to functional complexes. Curr. Opin. Genet. Dev. 14, 218–226 (2004).

    Article  CAS  Google Scholar 

  5. Krumm, A., Hickey, L.B. & Groudine, M. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. Genes Dev. 9, 559–572 (1995).

    Article  CAS  Google Scholar 

  6. Dvir, A. Promoter escape by RNA polymerase II. Biochim. Biophys. Acta 1577, 208–223 (2002).

    Article  CAS  Google Scholar 

  7. Lescure, B., Williamson, V. & Sentenac, A. Efficient and selective initiation by yeast RNA polymerase B in a dinucleotide-primed reaction. Nucleic Acids Res. 9, 31–45 (1981).

    Article  CAS  Google Scholar 

  8. Holstege, F.C., Fiedler, U. & Timmers, H.T. Three transitions in the RNA polymerase II transcription complex during initiation. EMBO J. 16, 7468–7480 (1997).

    Article  CAS  Google Scholar 

  9. Kapanidis, A.N. et al. Initial transcription by RNA polymerase proceeds through a DNA-scrunching mechanism. Science 314, 1144–1147 (2006).

    Article  Google Scholar 

  10. Margeat, E. et al. Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. Biophys. J. 90, 1419–1431 (2006).

    Article  CAS  Google Scholar 

  11. Adelman, K. et al. Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior. Proc. Natl. Acad. Sci. USA 99, 13538–13543 (2002).

    Article  CAS  Google Scholar 

  12. Davenport, R.J., Wuite, G.J., Landick, R. & Bustamante, C. Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287, 2497–2500 (2000).

    Article  CAS  Google Scholar 

  13. O'Brien, T. & Lis, J.T. Rapid changes in Drosophila transcription after an instantaneous heat shock. Mol. Cell. Biol. 13, 3456–3463 (1993).

    Article  CAS  Google Scholar 

  14. Tennyson, C.N., Klamut, H.J. & Worton, R.G. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet. 9, 184–190 (1995).

    Article  CAS  Google Scholar 

  15. Femino, A.M., Fogarty, K., Lifshitz, L.M., Carrington, W. & Singer, R.H. Visualization of single molecules of mRNA in situ. Methods Enzymol. 361, 245–304 (2003).

    Article  CAS  Google Scholar 

  16. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).

    Article  CAS  Google Scholar 

  17. Janicki, S.M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683–698 (2004).

    Article  CAS  Google Scholar 

  18. Robinett, C.C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  Google Scholar 

  19. Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).

    Article  CAS  Google Scholar 

  20. Femino, A.M., Fay, F.S., Fogarty, K. & Singer, R.H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).

    Article  CAS  Google Scholar 

  21. Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167 (2003).

    Article  CAS  Google Scholar 

  22. Bentley, D.L. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr. Opin. Cell Biol. 17, 251–256 (2005).

    Article  CAS  Google Scholar 

  23. Darzacq, X. et al. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J. Cell Biol. 173, 207–218 (2006).

    Article  CAS  Google Scholar 

  24. Palancade, B. & Bensaude, O. Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur. J. Biochem. 270, 3859–3870 (2003).

    Article  CAS  Google Scholar 

  25. Phair, R.D. & Misteli, T. Kinetic modelling approaches to in vivo imaging. Nat. Rev. Mol. Cell Biol. 2, 898–907 (2001).

    Article  CAS  Google Scholar 

  26. Nguyen, V.T. et al. In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res. 24, 2924–2929 (1996).

    Article  CAS  Google Scholar 

  27. Becker, M. et al. Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep. 3, 1188–1194 (2002).

    Article  CAS  Google Scholar 

  28. Mason, P.B. & Struhl, K. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol. Cell 17, 831–840 (2005).

    Article  CAS  Google Scholar 

  29. Boeger, H. et al. Structural basis of eukaryotic gene transcription. FEBS Lett. 579, 899–903 (2005).

    Article  CAS  Google Scholar 

  30. Phair, R.D. & Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

    Article  CAS  Google Scholar 

  31. Beaudouin, J., Mora-Bermudez, F., Klee, T., Daigle, N. & Ellenberg, J. Dissecting the contribution of diffusion and interactions to the mobility of nuclear proteins. Biophys. J. 90, 1878–1894 (2006).

    Article  CAS  Google Scholar 

  32. Sprague, B.L. et al. Analysis of binding at a single spatially localized cluster of binding sites by fluorescence recovery after photobleaching. Biophys. J. 91, 1169–1191 (2006).

    Article  CAS  Google Scholar 

  33. Hieda, M., Winstanley, H., Maini, P., Iborra, F.J. & Cook, P.R. Different populations of RNA polymerase II in living mammalian cells. Chromosome Res. 13, 135–144 (2005).

    Article  CAS  Google Scholar 

  34. Kimura, H., Sugaya, K. & Cook, P.R. The transcription cycle of RNA polymerase II in living cells. J. Cell Biol. 159, 777–782 (2002).

    Article  CAS  Google Scholar 

  35. Yamaguchi, Y., Wada, T. & Handa, H. Interplay between positive and negative elongation factors: drawing a new view of DRB. Genes Cells 3, 9–15 (1998).

    Article  CAS  Google Scholar 

  36. Peterlin, B.M. & Price, D.H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006).

    Article  CAS  Google Scholar 

  37. Darzacq, X., Singer, R.H. & Shav-Tal, Y. Dynamics of transcription and mRNA export. Curr. Opin. Cell Biol. 17, 332–339 (2005).

    Article  CAS  Google Scholar 

  38. Epshtein, V. & Nudler, E. Cooperation between RNA polymerase molecules in transcription elongation. Science 300, 801–805 (2003).

    Article  CAS  Google Scholar 

  39. Landick, R. The regulatory roles and mechanism of transcriptional pausing. Biochem. Soc. Trans. 34, 1062–1066 (2006).

    Article  CAS  Google Scholar 

  40. Liu, L.F. et al. Mechanism of action of camptothecin. Ann. NY Acad. Sci. 922, 1–10 (2000).

    Article  CAS  Google Scholar 

  41. Collins, I., Weber, A. & Levens, D. Transcriptional consequences of topoisomerase inhibition. Mol. Cell. Biol. 21, 8437–8451 (2001).

    Article  CAS  Google Scholar 

  42. Listerman, I., Sapra, A.K. & Neugebauer, K.M. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells. Nat. Struct. Mol. Biol. 13, 815–822 (2006).

    Article  CAS  Google Scholar 

  43. Cheng, C. & Sharp, P.A. RNA polymerase II accumulation in the promoter-proximal region of the dihydrofolate reductase and gamma-actin genes. Mol. Cell. Biol. 23, 1961–1967 (2003).

    Article  CAS  Google Scholar 

  44. Eick, D. & Bornkamm, G.W. Transcriptional arrest within the first exon is a fast control mechanism in c-myc gene expression. Nucleic Acids Res. 14, 8331–8346 (1986).

    Article  CAS  Google Scholar 

  45. Kao, S.Y., Calman, A.F., Luciw, P.A. & Peterlin, B.M. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330, 489–493 (1987).

    Article  CAS  Google Scholar 

  46. Rougvie, A.E. & Lis, J.T. The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged. Cell 54, 795–804 (1988).

    Article  CAS  Google Scholar 

  47. Saunders, A., Core, L.J. & Lis, J.T. Breaking barriers to transcription elongation. Nat. Rev. Mol. Cell Biol. 7, 557–567 (2006).

    Article  CAS  Google Scholar 

  48. Luo, W. & Bentley, D. A ribonucleolytic rat torpedoes RNA polymerase II. Cell 119, 911–914 (2004).

    Article  CAS  Google Scholar 

  49. Dundr, M. et al. A kinetic framework for a mammalian RNA polymerase in vivo. Science 298, 1623–1626 (2002).

    Article  CAS  Google Scholar 

  50. Miller, O.L., Jr. & Hamkalo, B.A. Visualization of RNA synthesis on chromosomes. Int. Rev. Cytol. 33, 1–25 (1972).

    Article  Google Scholar 

  51. Jackson, D.A., Iborra, F.J., Manders, E.M. & Cook, P.R. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol. Biol. Cell 9, 1523–1536 (1998).

    Article  CAS  Google Scholar 

  52. Struhl, K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat. Struct. Mol. Biol. 14, 103–105 (2007).

    Article  CAS  Google Scholar 

  53. Yao, J., Munson, K.M., Webb, W.W. & Lis, J.T. Dynamics of heat shock factor association with native gene loci in living cells. Nature 442, 1050–1053 (2006).

    Article  CAS  Google Scholar 

  54. Chubb, J.R., Trcek, T., Shenoy, S.M. & Singer, R.H. Transcriptional pulsing of a developmental gene. Curr. Biol. 16, 1018–1025 (2006).

    Article  CAS  Google Scholar 

  55. Shav-Tal, Y., Singer, R.H. & Darzacq, X. Imaging gene expression in single living cells. Nat. Rev. Mol. Cell Biol. 5, 855–861 (2004).

    Article  CAS  Google Scholar 

  56. Chartrand, P., Bertrand, E., Singer, R.H. & Long, R.M. Sensitive and high-resolution detection of RNA in situ. Methods Enzymol. 318, 493–506 (2000).

    Article  CAS  Google Scholar 

  57. Bregman, D.B., Du, L., van der Zee, S. & Warren, S.L. Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J. Cell Biol. 129, 287–298 (1995).

    Article  CAS  Google Scholar 

  58. Bonnet, F., Vigneron, M., Bensaude, O. & Dubois, M.F. Transcription-independent phosphorylation of the RNA polymerase II C-terminal domain (CTD) involves ERK kinases (MEK1/2). Nucleic Acids Res. 27, 4399–4404 (1999).

    Article  CAS  Google Scholar 

  59. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).

    Article  Google Scholar 

  60. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the seminal contributions of S. Janicki and D. Spector in developing the cell line. We thank D. Larson and O. Bensaude for discussions on the kinetic modeling, K. Neugebauer for suggesting the use of camptothecin, S. Buhl (Albert Einstein College of Medicine) for hybridoma supernatants containing the H14 and H5 antibodies, and E. Bertrand for sharing unpublished data. This work was online in open peer review in July 2006 on the Nature website. This work was supported by the US National Institutes of Health, National Institute of Biomedical Imaging and Bioengineering, grant EB-002060 to R.H.S. Y.S.-T. is the Jane Stern Lebell Family Fellow in Life Sciences at Bar-Ilan University.

Author information

Authors and Affiliations

Authors

Contributions

All data were initially acquired by X.D. and Y.S.-T. Subsequent data were obtained by V.d.T. (Fig. 4a,b and Fig. 5a) and Y.B. (Fig. 9b). S.M.S. was responsible for the microscopy, built the wide-field microscope for live-cell imaging and wrote analysis software. X.D. performed the kinetic modeling. R.D.P. provided consultation on model formulation and testing, and training in the use of the ProcessDB software. R.H.S. supervised the project.

Corresponding author

Correspondence to Robert H Singer.

Ethics declarations

Competing interests

R.D.P. is cofounder and chief science officer of Integrative Bioinformatics, Inc. (IBI) and holds an equity position in IBI.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1, Supplementary Discussion, Supplementary Methods (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darzacq, X., Shav-Tal, Y., de Turris, V. et al. In vivo dynamics of RNA polymerase II transcription. Nat Struct Mol Biol 14, 796–806 (2007). https://doi.org/10.1038/nsmb1280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing