Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E2–BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages

Abstract

An E3 ubiquitin ligase mediates the transfer of activated ubiquitin from an E2 ubiquitin-conjugating enzyme to its substrate lysine residues. Using a structure-based, yeast two-hybrid strategy, we discovered six previously unidentified interactions between the human heterodimeric RING E3 BRCA1-BARD1 and the human E2s UbcH6, Ube2e2, UbcM2, Ubc13, Ube2k and Ube2w. All six E2s bind directly to the BRCA1 RING motif and are active with BRCA1-BARD1 for autoubiquitination in vitro. Four of the E2s direct monoubiquitination of BRCA1. Ubc13-Mms2 and Ube2k direct the synthesis of Lys63- or Lys48-linked ubiquitin chains on BRCA1 and require an acceptor ubiquitin attached to BRCA1. Differences between the mono- and polyubiquitination activities of the BRCA1-interacting E2s correlate with their ability to bind ubiquitin noncovalently at a site distal to the active site. Thus, BRCA1 has the ability to direct the synthesis of specific polyubiquitin chain linkages, depending on the E2 bound to its RING.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A fused BRCA1-BARD1 construct interacts with multiple E2s in a yeast two-hybrid analysis.
Figure 2: Confirmation of direct E2–BRCA1-BARD1 interactions by NMR.
Figure 3: Sequence alignment of helix 1, loop L1 and loop L2 of BRCA1-interacting and noninteracting E2s.
Figure 4: Mutation of conserved alanine in loop L2 of UbcH5c eliminates autoubiquitination of BRCA1.
Figure 5: Autoubiquitination activity assays of BRCA1 with its interacting E2s.
Figure 6: Model of BRCA1-BARD1 autoubiquitination mechanisms.

Similar content being viewed by others

References

  1. Brzovic, P.S. et al. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc. Natl. Acad. Sci. USA 100, 5646–5651 (2003).

    Article  CAS  Google Scholar 

  2. Eddins, M.J., Carlile, C.M., Gomez, K.M., Pickart, C.M. & Wolberger, C. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 13, 915–920 (2006).

    Article  CAS  Google Scholar 

  3. Hofmann, R.M. & Pickart, C.M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    Article  CAS  Google Scholar 

  4. Haldeman, M.T., Xia, G., Kasperek, E.M. & Pickart, C.M. Structure and function of ubiquitin conjugating enzyme E2–25K: the tail is a core-dependent activity element. Biochemistry 36, 10526–10537 (1997).

    Article  CAS  Google Scholar 

  5. Dodd, R.B. et al. Solution structure of the Kaposi's sarcoma-associated herpesvirus K3 N-terminal domain reveals a novel E2-binding C4HC3-type RING domain. J. Biol. Chem. 279, 53840–53847 (2004).

    Article  CAS  Google Scholar 

  6. Plans, V. et al. The RING finger protein RNF8 recruits UBC13 for lysine 63-based self polyubiquitylation. J. Cell. Biochem. 97, 572–582 (2006).

    Article  CAS  Google Scholar 

  7. Zhang, M. et al. Chaperoned ubiquitylation–crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20, 525–538 (2005).

    Article  CAS  Google Scholar 

  8. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

    Article  CAS  Google Scholar 

  9. Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2–E3 enzyme cascade. Science 286, 1321–1326 (1999).

    Article  CAS  Google Scholar 

  10. Hashizume, R. et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276, 14537–14540 (2001).

    Article  CAS  Google Scholar 

  11. Brzovic, P.S., Rajagopal, P., Hoyt, D.W., King, M.C. & Klevit, R.E. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat. Struct. Biol. 8, 833–837 (2001).

    Article  CAS  Google Scholar 

  12. Brzovic, P.S., Lissounov, A., Christensen, D.E., Hoyt, D.W. & Klevit, R.E. A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21, 873–880 (2006).

    Article  CAS  Google Scholar 

  13. Huang, D.T. et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8's E1. Mol. Cell 17, 341–350 (2005).

    Article  CAS  Google Scholar 

  14. McKenna, S. et al. Noncovalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated polyubiquitination. J. Biol. Chem. 276, 40120–40126 (2001).

    Article  CAS  Google Scholar 

  15. Merkley, N. & Shaw, G.S. Solution structure of the flexible class II ubiquitin-conjugating enzyme Ubc1 provides insights for polyubiquitin chain assembly. J. Biol. Chem. 279, 47139–47147 (2004).

    Article  CAS  Google Scholar 

  16. Nishikawa, H. et al. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J. Biol. Chem. 279, 3916–3924 (2004).

    Article  CAS  Google Scholar 

  17. Wu-Baer, F., Lagrazon, K., Yuan, W. & Baer, R. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem. 278, 34743–34746 (2003).

    Article  CAS  Google Scholar 

  18. Dominguez, C. et al. Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. Structure 12, 633–644 (2004).

    Article  CAS  Google Scholar 

  19. Winkler, G.S. et al. An altered-specificity ubiquitin-conjugating enzyme/ubiquitin-protein ligase pair. J. Mol. Biol. 337, 157–165 (2004).

    Article  CAS  Google Scholar 

  20. Anan, T. et al. Human ubiquitin-protein ligase Nedd4: expression, subcellular localization and selective interaction with ubiquitin-conjugating enzymes. Genes Cells 3, 751–763 (1998).

    Article  CAS  Google Scholar 

  21. Plafker, S.M., Plafker, K.S., Weissman, A.M. & Macara, I.G. Ubiquitin charging of human class III ubiquitin-conjugating enzymes triggers their nuclear import. J. Cell Biol. 167, 649–659 (2004).

    Article  CAS  Google Scholar 

  22. Yin, G. et al. Cloning, characterization and subcellular localization of a gene encoding a human Ubiquitin-conjugating enzyme (E2) homologous to the Arabidopsis thaliana UBC-16 gene product. Front. Biosci. 11, 1500–1507 (2006).

    Article  CAS  Google Scholar 

  23. Polanowska, J., Martin, J.S., Garcia-Muse, T., Petalcorin, M.I. & Boulton, S.J. A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. EMBO J. 25, 2178–2188 (2006).

    Article  CAS  Google Scholar 

  24. Zhang, J. & Powell, S.N. The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol. Cancer Res. 3, 531–539 (2005).

    Article  CAS  Google Scholar 

  25. Zhao, G.Y. et al. A critical role for the ubiquitin-conjugating enzyme Ubc13 in initiating homologous recombination. Mol. Cell 25, 663–675 (2007).

    Article  CAS  Google Scholar 

  26. Kleiman, F.E. et al. BRCA1/BARD1 inhibition of mRNA 3′ processing involves targeted degradation of RNA polymerase II. Genes Dev. 19, 1227–1237 (2005).

    Article  CAS  Google Scholar 

  27. Starita, L.M. et al. BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. J. Biol. Chem. 280, 24498–24505 (2005).

    Article  CAS  Google Scholar 

  28. Pickart, C.M. & Raasi, S. Controlled synthesis of polyubiquitin chains. Methods Enzymol. 399, 21–36 (2005).

    Article  CAS  Google Scholar 

  29. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  30. Johnson, B.A. & Blevins, R.A. NMR View: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of C.M. Pickart. We thank C. Eakin, M. Daley and D.M. Wenzel for careful reading of the manuscript; C. Parchen and A. Lissounov for assistance with molecular cloning and protein characterization; D.M. Wenzel for sharing unpublished data; and the following researchers for plasmids encoding human E2s: T. Ohta (St. Marianna University; Rad6b, UbcH10 and Ube2k), B. Schulman (St. Jude Children's Research Hospital; UbcH5b and UbcH12), K. Lorick (US National Cancer Institute; Ube2h, UbcH8, Ubc13 and Cdc34), S. Plafker (University of Oklahoma Health Sciences Center; UbcM2), S. Lin (Wesleyan University; Uev1a), and W. Xiao (University of Saskatchewan; Mms2). D.E.C. was supported by a US Department of Defense Breast Cancer Research Program fellowship (W81XWH-04-1-0390) and a US National Institute of General Medical Sciences training grant (T32GM007270). This work was supported by US National Cancer Institute grant R01 CA079953 to R.E.K.

Author information

Authors and Affiliations

Authors

Contributions

D.E.C., P.S.B. and R.E.K. designed and analyzed the experiments. D.E.C. conducted all experiments except those in Supplementary Figures 4 and 6, which were conducted by P.S.B. The paper was written by D.E.C. and R.E.K. with editorial assistance from P.S.B.

Corresponding author

Correspondence to Rachel E Klevit.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 485 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, D., Brzovic, P. & Klevit, R. E2–BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat Struct Mol Biol 14, 941–948 (2007). https://doi.org/10.1038/nsmb1295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing