Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autotransporter structure reveals intra-barrel cleavage followed by conformational changes

Abstract

Autotransporters are virulence factors produced by Gram-negative bacteria. They consist of two domains, an N-terminal 'passenger' domain and a C-terminal β-domain. β-domains form β-barrel structures in the outer membrane while passenger domains are translocated into the extracellular space. In some autotransporters, the two domains are separated by proteolytic cleavage. Using X-ray crystallography, we solved the 2.7-Å structure of the post-cleavage state of the β-domain of EspP, an autotransporter produced by Escherichia coli strain O157:H7. The structure consists of a 12-stranded β-barrel with the passenger domain–β-domain cleavage junction located inside the barrel pore, approximately midway between the extracellular and periplasmic surfaces of the outer membrane. The structure reveals an unprecedented intra-barrel cleavage mechanism and suggests that two conformational changes occur in the β-domain after cleavage, one conferring increased stability on the β-domain and another restricting access to the barrel pore.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the EspP β-domain.
Figure 2: Interactions between the luminal α-helix and acidic cluster.
Figure 3: Conformational changes occur upon cleavage of the passenger domain.
Figure 4: Effects of point mutations and deletions on the stability of the EspP β-domain.
Figure 5: Effect of mutations in the acidic cluster on EspP passenger domain cleavage.
Figure 6: Electrostatic properties of the EspP and NalP β-domains.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Henderson, I.R. & Nataro, J.P. Virulence functions of autotransporter proteins. Infect. Immun. 69, 1231–1243 (2001).

    Article  CAS  Google Scholar 

  2. Henderson, I.R., Navarro-Garcia, F., Desvaux, M., Fernandez, R.C. & Ala'Aldeen, D. Type V protein secretion pathway: the autotransporter story. Microbiol. Mol. Biol. Rev. 68, 692–744 (2004).

    Article  CAS  Google Scholar 

  3. Jacob-Dubuisson, F., Fernandez, R. & Coutte, L. Protein secretion through autotransporter and two-partner pathways. Biochim. Biophys. Acta 1694, 235–257 (2004).

    Article  CAS  Google Scholar 

  4. Thanassi, D.G., Stathopoulos, C., Karkal, A. & Li, H. Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of gram-negative bacteria (review). Mol. Membr. Biol. 22, 63–72 (2005).

    Article  CAS  Google Scholar 

  5. Cotter, S.E., Surana, N.K. & St Geme, J.W. III Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol. 13, 199–205 (2005).

    Article  CAS  Google Scholar 

  6. Henderson, I.R., Navarro-Garcia, F. & Nataro, J.P. The great escape: structure and function of the autotransporter proteins. Trends Microbiol. 6, 370–378 (1998).

    Article  CAS  Google Scholar 

  7. Emsley, P., Charles, I.G., Fairweather, N.F. & Isaacs, N.W. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 381, 90–92 (1996).

    Article  CAS  Google Scholar 

  8. Nummelin, H. et al. The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel beta-roll. EMBO J. 23, 701–711 (2004).

    Article  CAS  Google Scholar 

  9. Otto, B.R. et al. Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic Escherichia coli. J. Biol. Chem. 280, 17339–17345 (2005).

    Article  CAS  Google Scholar 

  10. Yeo, H.J. et al. Structural basis for host recognition by the Haemophilus influenzae Hia autotransporter. EMBO J. 23, 1245–1256 (2004).

    Article  CAS  Google Scholar 

  11. Kajava, A.V. & Steven, A.C. The turn of the screw: variations of the abundant beta-solenoid motif in passenger domains of Type V secretory proteins. J. Struct. Biol. 155, 306–315 (2006).

    Article  CAS  Google Scholar 

  12. Oomen, C.J. et al. Structure of the translocator domain of a bacterial autotransporter. EMBO J. 23, 1257–1266 (2004).

    Article  CAS  Google Scholar 

  13. Meng, G., Surana, N.K., St Geme, J.W. III & Waksman, G. Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J. 25, 2297–2304 (2006).

    Article  CAS  Google Scholar 

  14. Jong, W.S. et al. Limited tolerance towards folded elements during secretion of the autotransporter Hbp. Mol. Microbiol. 63, 1524–1536 (2007).

    Article  CAS  Google Scholar 

  15. Skillman, K.M., Barnard, T.J., Peterson, J.H., Ghirlando, R. & Bernstein, H.D. Efficient secretion of a folded protein domain by a monomeric bacterial autotransporter. Mol. Microbiol. 58, 945–958 (2005).

    Article  CAS  Google Scholar 

  16. Dautin, N. & Bernstein, H. Protein secretion in Gram-Negative bacteria via the autotransporter pathway. Annu. Rev. Microbiol. 61, 89–112 (2007).

    Article  CAS  Google Scholar 

  17. Voulhoux, R., Bos, M.P., Geurtsen, J., Mois, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).

    Article  CAS  Google Scholar 

  18. Veiga, E., Sugawara, E., Nikaido, H., de Lorenzo, V. & Fernandez, L.A. Export of autotransported proteins proceeds through an oligomeric ring shaped by C-terminal domains. EMBO J. 21, 2122–2131 (2002).

    Article  CAS  Google Scholar 

  19. Restieri, C., Garriss, G., Locas, M.C. & Dozois, C.M. Autotransporter-encoding sequences are phylogenetically distributed among Escherichia coli clinical isolates and reference strains. Appl. Environ. Microbiol. 73, 1553–1562 (2007).

    Article  CAS  Google Scholar 

  20. Dutta, P.R., Cappello, R., Navarro-Garcia, F. & Nataro, J.P. Functional comparison of serine protease autotransporters of enterobacteriaceae. Infect. Immun. 70, 7105–7113 (2002).

    Article  Google Scholar 

  21. Brunder, W., Schmidt, H. & Karch, H. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol. Microbiol. 24, 767–778 (1997).

    Article  CAS  Google Scholar 

  22. Szabady, R.L., Peterson, J.H., Skillman, K.M. & Bernstein, H.D. An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc. Natl. Acad. Sci. USA 102, 221–226 (2005).

    Article  CAS  Google Scholar 

  23. Velarde, J.J. & Nataro, J.P. Hydrophobic residues of the autotransporter EspP linker domain are important for outer membrane translocation of its passenger. J. Biol. Chem. 279, 31495–31504 (2004).

    Article  CAS  Google Scholar 

  24. Dautin, N., Barnard, T.J., Anderson, D.E. & Bernstein, H.D. Cleavage of a bacterial autotransporter by an evolutionarily convergent autocatalytic mechanism. EMBO J. 26, 1942–1952 (2007).

    Article  CAS  Google Scholar 

  25. Schulz, G.E. The structure of bacterial outer membrane proteins. Biochim. Biophys. Acta 1565, 308–317 (2002).

    Article  CAS  Google Scholar 

  26. Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A. & Sansom, M.S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    Article  CAS  Google Scholar 

  27. Matias, V.R., Al-Amoudi, A., Dubochet, J. & Beveridge, T.J. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185, 6112–6118 (2003).

    Article  CAS  Google Scholar 

  28. Yen, M.R. et al. Protein-translocating outer membrane porins of Gram-negative bacteria. Biochim. Biophys. Acta 1562, 6–31 (2002).

    Article  CAS  Google Scholar 

  29. Holm, L. & Park, J. DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567 (2000).

    Article  CAS  Google Scholar 

  30. Turner, D.P., Wooldridge, K.G. & Ala'Aldeen, D.A. Autotransported serine protease A of Neisseria meningitidis: an immunogenic, surface-exposed outer membrane, and secreted protein. Infect. Immun. 70, 4447–4461 (2002).

    Article  CAS  Google Scholar 

  31. Vandeputte-Rutten, L. et al. Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic mechanism. EMBO J. 20, 5033–5039 (2001).

    Article  CAS  Google Scholar 

  32. Snijder, H.J. et al. Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 401, 717–721 (1999).

    Article  CAS  Google Scholar 

  33. Jain, S. & Goldberg, M.B. Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J. Bacteriol. 189, 5393–5398 (2007).

    Article  CAS  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Macromolecular crystallography. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  35. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  36. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  37. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  38. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  Google Scholar 

  39. Lovell, S.C. et al. Structure validation by Cα geometry: φ,ψ and Cβ deviation. Proteins 50, 437–450 (2003).

    Article  CAS  Google Scholar 

  40. Hooft, R.W., Sander, C. & Vriend, G. Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins 26, 363–376 (1996).

    Article  CAS  Google Scholar 

  41. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  42. Akiyama, Y. & Ito, K. SecY protein, a membrane-embedded secretion factor of E. coli, is cleaved by the ompT protease in vitro. Biochem. Biophys. Res. Commun. 167, 711–715 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Peterson for technical support, E. Udho and A. Finkelstein for discussions, J. Shiloach and L. Trinh for help with fermentation, and A. Hickman for critically reading the manuscript. This work was supported by the Intramural Research Program of the US National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. Diffraction data were collected at the SER-CAT 22-ID and 22-BM beamlines at the Advanced Photon Source, Argonne National Laboratory. Supporting institutions may be found at http://www.ser-cat.org/members.html.

Author information

Authors and Affiliations

Authors

Contributions

T.J.B. purified, crystallized and determined the crystal structure of EspP. N.D. and H.D.B. designed and performed mutagenesis and cell biological assays. P.L. and S.K.B. were involved in crystallization, data collection, structure analysis and discussions. T.J.B., H.D.B. and S.K.B. wrote the manuscript.

Corresponding authors

Correspondence to Harris D Bernstein or Susan K Buchanan.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–6, Supplementary Tables 1–2 and Supplementary Methods (PDF 972 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnard, T., Dautin, N., Lukacik, P. et al. Autotransporter structure reveals intra-barrel cleavage followed by conformational changes. Nat Struct Mol Biol 14, 1214–1220 (2007). https://doi.org/10.1038/nsmb1322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1322

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing