Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer

Abstract

Germline mutations in the BRCA1 tumor suppressor gene often result in a significant increase in susceptibility to breast and ovarian cancers. Although the molecular basis of their effects remains largely obscure, many mutations are known to target the highly conserved C-terminal BRCT repeats that function as a phosphoserine/phosphothreonine-binding module. We report the X-ray crystal structure at a resolution of 1.85 Å of the BRCA1 tandem BRCT domains in complex with a phosphorylated peptide representing the minimal interacting region of the DEAH-box helicase BACH1. The structure reveals the determinants of this novel class of BRCA1 binding events. We show that a subset of disease-linked mutations act through specific disruption of phospho-dependent BRCA1 interactions rather than through gross structural perturbation of the tandem BRCT domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the tandem BRCT domain–BACH1 phosphopeptide complex.
Figure 2: BRCT cancer-linked mutations and sequence conservation in relation to the BACH1 phosphopeptide-binding site.
Figure 3: Functional effects of tandem BRCT domain mutations.
Figure 4: The Phe(+3) position of the BACH1 phosphopeptide is essential for tandem BRCT domain binding specificity.
Figure 5: Localization of the BRCT domains to nuclear phosphoproteins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Scully, R. & Livingston, D.M. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408, 429–432 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Venkitaraman, A.R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Starita, L.M. & Parvin, J.D. The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr. Opin. Cell Biol. 15, 345–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Powell, S.N. & Kachnic, L.A. Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22, 5784–5791 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Cantor, S.B. et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105, 149–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Yu, X., Chini, C.C., He, M., Mer, G. & Chen, J. The BRCT domain is a phospho-protein binding domain. Science 302, 639–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Manke, I.A., Lowery, D.M., Nguyen, A. & Yaffe, M.B. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302, 636–639 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Scully, R. et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90, 425–435 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, Y. et al. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14, 927–939 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Miki, Y. et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Couch, F.J. & Weber, B.L. Mutations and polymorphisms in the familial early-onset breast cancer (BRCA1) gene. Breast Cancer Information Core. Hum. Mutat. 8, 8–18 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Nathanson, K.L., Wooster, R., Weber, B.L. & Nathanson, K.N. Breast cancer genetics: what we know and what we need. Nat. Med. 7, 552–556 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Ford, D. et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am. J. Hum. Genet. 62, 676–689 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Callebaut, I. & Mornon, J.P. From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett. 400, 25–30 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Huyton, T., Bates, P.A., Zhang, X., Sternberg, M.J. & Freemont, P.S. The BRCA1 C-terminal domain: structure and function. Mutat. Res. 460, 319–332 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez, M., Yu, X., Chen, J. & Songyang, Z. Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J. Biol. Chem. 278, 52914–52918 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Williams, R.S., Green, R. & Glover, J.N. Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1. Nat. Struct. Biol. 8, 838–842 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Williams, R.S. & Glover, J.N. Structural consequences of a cancer-causing BRCA1-BRCT missense mutation. J. Biol. Chem. 278, 2630–2635 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Ekblad, C.M. et al. Characterisation of the BRCT domains of the breast cancer susceptibility gene product BRCA1. J. Mol. Biol. 320, 431–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Vallon-Christersson, J. et al. Functional analysis of BRCA1 C-terminal missense mutations identified in breast and ovarian cancer families. Hum. Mol. Genet. 10, 353–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Joo, W.S. et al. Structure of the 53BP1 BRCT region bound to p53 and its comparison to the BRCA1 BRCT structure. Genes Dev. 16, 583–593 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Derbyshire, D.J. et al. Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J. 21, 3863–3872 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elia, E.A.H. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the polo-box domain. Cell 115, 83–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Cheng, K.Y., Lowe, E.D., Sinclair, J., Nigg, E.A. & Johnson, L.N. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J. 22, 5757–5768 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, J. et al. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell 2, 317–328 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Scully, R. et al. Genetic analysis of BRCA1 function in a defined tumor cell line. Mol. Cell 4, 1093–1099 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Mirzoeva, O.K. & Petrini, J.H. DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol. Cell. Biol. 21, 281–288 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Cantor, S. et al. The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc. Natl. Acad. Sci. USA 101, 2357–2362 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Snouwaert, J.N. et al. BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased frequency of non-homologous recombination that is corrected by expression of a brca1 transgene. Oncogene 18, 7900–7907 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Moynahan, M.E., Chiu, J.W., Koller, B.H. & Jasin, M. BRCA1 controls homology-directed DNA repair. Mol. Cell 4, 511–518 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Westermark, U.K. et al. BARD1 participates with BRCA1 in homology-directed repair of chromosome breaks. Mol. Cell. Biol. 23, 7926–7936 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  35. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard . Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  36. Williams, R.S., Lee, M.S., Hau, D. & Glover, J.N.M. Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Nat. Struct. Mol. Biol. advance online publication, 9 May 2004 (doi:10.1038/nsmb776).

Download references

Acknowledgements

We thank R. Scully and D. Livingston for vectors and helpful discussions, D. Livingston and R. Drapkin for the anti-BACH1 antibody, M. Glover for sharing unpublished information, members of the Yaffe and Smerdon laboratories for assistance and helpful comments, and S. Gamblin for assistance with crystal handling. This work was supported by US National Institutes of Health grant GM 60594 and a Burroughs-Wellcome Career Development Award to M.B.Y. D.L. was supported by a Howard Hughes Medical Institute predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael B Yaffe or Stephen J Smerdon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clapperton, J., Manke, I., Lowery, D. et al. Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer. Nat Struct Mol Biol 11, 512–518 (2004). https://doi.org/10.1038/nsmb775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb775

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing