Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells

Abstract

Transcriptional silencing in mammals is often associated with promoter methylation. However, a considerable number of genomic methylated CpGs exist in transposable elements, which are frequently found in intronic regions. To determine whether intragenic methylation influences transcription efficiency, we used the Cre/loxP-based system, RMCE, to introduce a transgene, methylated exclusively in a region downstream of the promoter, into a specific genomic site. This methylation pattern was maintained in vivo, and yielded a clear decrease in transgene expression relative to an unmethylated control. Notably, RNA polymerase II (Pol II) was depleted exclusively in the methylated region, as was histone H3 di- and trimethylated on Lys4 and acetylated on Lys9 and Lys14. As the methylated region adopts a closed chromatin structure in vivo, we propose that dense intragenic DNA methylation in mammalian cells initiates formation of a chromatin structure that reduces the efficiency of Pol II elongation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of the methylated reporter cassette.
Figure 2: Intragenic methylation influences expression level.
Figure 3: Methylation state is preserved in vivo.
Figure 4: Intragenic methylation does not affect Pol II initiation.
Figure 5: Pol II is depleted exclusively in the methylated region.
Figure 6: Intragenic DNA methylation directs a local alteration in histone modifications.
Figure 7: Intragenic DNA methylation generates a compact chromatin structure.

Similar content being viewed by others

References

  1. Takai, D. & Jones, P.A. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 99, 3740–3745 (2002).

    Article  CAS  Google Scholar 

  2. Bird, A., Taggart, M., Frommer, M., Miller, O.J. & Macleod, D. A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40, 91–99 (1985).

    Article  CAS  Google Scholar 

  3. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  4. Yoder, J.A., Walsh, C.P. & Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13, 335–340 (1997).

    Article  CAS  Google Scholar 

  5. Smit, A.F. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9, 657–663 (1999).

    Article  CAS  Google Scholar 

  6. Woodcock, D.M., Lawler, C.B., Linsenmeyer, M.E., Doherty, J.P. & Warren, W.D. Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J. Biol. Chem. 272, 7810–7816 (1997).

    Article  CAS  Google Scholar 

  7. Szak, S.T. et al. Molecular archeology of L1 insertions in the human genome. Genome Biol. 3, 0052–0058 (2002).

    Article  Google Scholar 

  8. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  Google Scholar 

  9. Ng, H.H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat. Genet. 23, 58–61 (1999).

    Article  CAS  Google Scholar 

  10. Eden, S., Hashimshony, T., Keshet, I., Cedar, H. & Thorne, A.W. DNA methylation models histone acetylation. Nature 394, 842 (1998).

    Article  CAS  Google Scholar 

  11. Lorincz, M.C., Schübeler, D. & Groudine, M. Methylation-mediated proviral silencing is associated with MeCP2 recruitment and localized histone H3 deacetylation. Mol. Cell. Biol. 21, 7913–7922 (2001).

    Article  CAS  Google Scholar 

  12. Groudine, M., Eisenman, R. & Weintraub, H. Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature 292, 311–317 (1981).

    Article  CAS  Google Scholar 

  13. Antequera, F., Macleod, D. & Bird, A.P. Specific protection of methylated CpGs in mammalian nuclei. Cell 58, 509–517 (1989).

    Article  CAS  Google Scholar 

  14. Buschhausen, G., Wittig, B., Graessmann, M. & Graessmann, A. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 84, 1177–1181 (1987).

    Article  CAS  Google Scholar 

  15. Feng, Y.Q. et al. Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J. Mol. Biol. 292, 779–785 (1999).

    Article  CAS  Google Scholar 

  16. Schübeler, D. et al. Genomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation. Mol. Cell. Biol. 20, 9103–9112 (2000).

    Article  Google Scholar 

  17. Hsieh, C.L. Stability of patch methylation and its impact in regions of transcriptional initiation and elongation. Mol. Cell. Biol. 17, 5897–5904 (1997).

    Article  CAS  Google Scholar 

  18. Keshet, I., Yisraeli, J. & Cedar, H. Effect of regional DNA methylation on gene expression. Proc. Natl. Acad. Sci. USA 82, 2560–2564 (1985).

    Article  CAS  Google Scholar 

  19. Rountree, M.R. & Selker, E.U. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev. 11, 2383–2395 (1997).

    Article  CAS  Google Scholar 

  20. Stoger, R. et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell 73, 61–71 (1993).

    Article  CAS  Google Scholar 

  21. Nguyen, C.T., Gonzales, F.A. & Jones, P.A. Altered chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Res. 29, 4598–4606 (2001).

    Article  CAS  Google Scholar 

  22. Pao, M.M. et al. The endothelin receptor B (EDNRB) promoter displays heterogeneous, site specific methylation patterns in normal and tumor cells. Hum. Mol. Genet. 10, 903–910 (2001).

    Article  CAS  Google Scholar 

  23. Krumm, A., Hickey, L.B. & Groudine, M. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation. Genes Dev. 9, 559–572 (1995).

    Article  CAS  Google Scholar 

  24. Schneider, R. et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat. Cell Biol. 6, 73–77 (2003).

    Article  Google Scholar 

  25. Schübeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    Article  Google Scholar 

  26. Hong, L., Schroth, G.P., Matthews, H.R., Yau, P. & Bradbury, E.M. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 “tail” to DNA. J. Biol. Chem. 268, 305–314 (1993).

    CAS  PubMed  Google Scholar 

  27. Lee, D.Y., Hayes, J.J., Pruss, D. & Wolffe, A.P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72, 73–84 (1993).

    Article  CAS  Google Scholar 

  28. Meehan, R.R., Lewis, J.D., McKay, S., Kleiner, E.L. & Bird, A.P. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58, 499–507 (1989).

    Article  CAS  Google Scholar 

  29. Lewis, J.D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69, 905–914 (1992).

    Article  CAS  Google Scholar 

  30. Ng, H.H., Robert, F., Young, R.A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719 (2003).

    Article  CAS  Google Scholar 

  31. Bannister, A.J., Schneider, R. & Kouzarides, T. Histone methylation: dynamic or static? Cell 109, 801–806 (2002).

    Article  CAS  Google Scholar 

  32. Briggs, S.D. et al. Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418, 498 (2002).

    Article  CAS  Google Scholar 

  33. Nishioka, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev. 16, 479–489 (2002).

    Article  CAS  Google Scholar 

  34. Kristjuhan, A. et al. Transcriptional inhibition of genes with severe histone h3 hypoacetylation in the coding region. Mol. Cell 10, 925–933 (2002).

    Article  CAS  Google Scholar 

  35. Protacio, R.U., Li, G., Lowary, P.T. & Widom, J. Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome. Mol. Cell. Biol. 20, 8866–8878 (2000).

    Article  CAS  Google Scholar 

  36. Wang, X., He, C., Moore, S.C. & Ausio, J. Effects of histone acetylation on the solubility and folding of the chromatin fiber. J. Biol. Chem. 276, 12764–12768 (2001).

    Article  CAS  Google Scholar 

  37. Walia, H., Chen, H.Y., Sun, J.M., Holth, L.T. & Davie, J.R. Histone acetylation is required to maintain the unfolded nucleosome structure associated with transcribing DNA. J. Biol. Chem. 273, 14516–14522 (1998).

    Article  CAS  Google Scholar 

  38. Wittschieben, B.O. et al. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4, 123–128 (1999).

    Article  CAS  Google Scholar 

  39. John, S. et al. The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)–FACT complex. Genes Dev. 14, 1196–1208 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Belotserkovskaya, R., Saunders, A., Lis, J.T. & Reinberg, D. Transcription through chromatin: understanding a complex FACT. Biochim. Biophys. Acta 1677, 87–99 (2004).

    Article  CAS  Google Scholar 

  41. Kaplan, C.D., Laprade, L. & Winston, F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301, 1096–1099 (2003).

    Article  CAS  Google Scholar 

  42. Svejstrup, J.Q. Transcription. Histones face the FACT. Science 301, 1053–1055 (2003).

    Article  CAS  Google Scholar 

  43. Han, J.S., Szak, S.T. & Boeke, J.D. Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429, 268–274 (2004).

    Article  CAS  Google Scholar 

  44. Liang, G. et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc. Natl. Acad. Sci. USA 101, 7357–7362 (2004).

    Article  CAS  Google Scholar 

  45. Bestor, T.H. & Tycko, B. Creation of genomic methylation patterns. Nat. Genet. 12, 363–367 (1996).

    Article  CAS  Google Scholar 

  46. Versteeg, R. et al. The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res. 13, 1998–2004 (2003).

    Article  CAS  Google Scholar 

  47. Grover, D., Mukerji, M., Bhatnagar, P., Kannan, K. & Brahmachari, S.K. Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics 20, 813–817 (2004).

    Article  CAS  Google Scholar 

  48. Lorincz, M.C. et al. Dynamic analysis of proviral induction and De Novo methylation: implications for a histone deacetylase-independent, methylation density- dependent mechanism of transcriptional repression. Mol. Cell. Biol. 20, 842–850 (2000).

    Article  CAS  Google Scholar 

  49. Shang, Y., Hu, X., DiRenzo, J., Lazar, M.A. & Brown, M. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843–852 (2000).

    Article  CAS  Google Scholar 

  50. Sawado, T., Halow, J., Bender, M.A. & Groudine, M. The β-globin locus control region (LCR) functions primarily by enhancing the transition from transcription initiation to elongation. Genes Dev. 17, 1009–1018 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants DK44746 and HL57620 to M.G. M.L. is a special fellow of the Leukemia and Lymphoma Society. We thank E. Bouhassira for the RL5 MEL cell line, G. Peters for the plasmid p16EXON1α, D. Schübeler, A. Krumm and T. Sawado for technical advice and discussion, and R. Gardner and T. Ragoczy for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew C Lorincz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Primers used in this study. (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorincz, M., Dickerson, D., Schmitt, M. et al. Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11, 1068–1075 (2004). https://doi.org/10.1038/nsmb840

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing