Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin

Abstract

Post-translational histone modifications regulate epigenetic switching between different chromatin states. Distinct histone modifications, such as acetylation, methylation and phosphorylation, define different functional chromatin domains, and often do so in a combinatorial fashion. The centromere is a unique chromosomal locus that mediates multiple segregation functions, including kinetochore formation, spindle-mediated movements, sister cohesion and a mitotic checkpoint. Centromeric (CEN) chromatin is embedded in heterochromatin and contains blocks of histone H3 nucleosomes interspersed with blocks of CENP-A nucleosomes, the histone H3 variant that provides a structural and functional foundation for the kinetochore. Here, we demonstrate that the spectrum of histone modifications present in human and Drosophila melanogaster CEN chromatin is distinct from that of both euchromatin and flanking heterochromatin. We speculate that this distinct modification pattern contributes to the unique domain organization and three-dimensional structure of centromeric regions, and/or to the epigenetic information that determines centromere identity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H3 is not di- or trimethylated at Lys9 in CEN chromatin.
Figure 2: Quantification of overlap between histone modifications and CENP-A/CID on chromatin fibers from flies and humans.
Figure 3: H3 is not di- or trimethylated at Lys9 in CEN chromatin at metaphase.
Figure 4: Quantification of overlap between histone modifications and CENP-A/CID on metaphase chromosomes from humans and flies.
Figure 5: H3 and H4 are hypoacetylated in CEN chromatin.
Figure 6: H3 is dimethylated at Lys4 in CEN chromatin.
Figure 7: H3 is not trimethylated at Lys4 in CEN chromatin.
Figure 8: Model for three-dimensional organization of centromeric (CEN) chromatin in D. melanogaster and humans.

Similar content being viewed by others

References

  1. Fischle, W., Wang, Y., Allis, C.D. Binary switches and modification cassettes in histone biology and beyond. Nature 425, 475–479 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Bernstein, B.E. et al. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc. Natl. Acad. Sci. USA 99, 8695–8700 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Schneider, R. et al. Histone H3 Lys 4 methylation patterns in higher eukaryotic genes. Nat. Cell Biol. 6, 73–77 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Peters, A.H.F.M. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Rice, J.C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12, 1591–1599 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Nakayama, J.-I., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I.S. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Schotta, G. et al. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muller, H.J. Types of visible variations induced by X-rays in Drosophila. J. Genet. 22, 299–334 (1930).

    Article  Google Scholar 

  11. Allshire, R.C., Javerzat, J.P., Redhead, N.J. & Cranston, G. Position effect variegation at fission yeast centromeres. Cell 76, 157–169 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Sullivan, B.A., Blower, M.D. & Karpen, G.H. Determining centromere identity: cyclical stories and forking paths. Nat. Rev. Genet. 2, 584–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Cleveland, D.W., Mao, Y. & Sullivan, K.F. Centromere and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Yoda, K. et al. Human centromere protein A (CENP-A) can replace histone H3 in nucleosomes reconstitution in vitro. Proc. Natl. Acad. Sci. USA 97, 7266–7271 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blower, M.D., Sullivan, B.A. & Karpen, G.H. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2, 319–330 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mellone, B.G. & Allshire, R.C. Stretching it: putting the CEN(P-A) in centromere. Curr. Opin. Genet. Dev. 13, 191–198 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Nagaki, K. et al. Sequencing of a rice centromere uncovers active genes. Nat. Genet. 36, 138–145 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Partridge, J.F., Borgstrøm, B. & Allshire, R.C. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14, 783–791 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Blower, M.D. & Karpen, G.H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat. Cell Biol. 3, 730–739 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Taddei, A., Maison, C., Roche, D. & Almouzni, G. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat. Cell Biol. 3, 114–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. O'Neill, L.P. & Turner, B.M. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14, 3946–3957 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boggs, B.A. et al. Differentially methylated forms of histone H3 show unique associations patterns with inactive human X chromosomes. Nat. Genet. 30, 73–76 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Maggert, K.A. & Karpen, G.H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158, 1615–1628 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hoskins, R.A. et al. Heterochromatin sequences in a Drosophila whole-genome shotgun assembly. Genome Biol. 3, 0085.1–0085.16 (2002).

    Article  Google Scholar 

  25. Mitchell, A.R., Jeppesen, P., Nicol, L., Morrision, H. & Kipling, D. Epigenetic control of mammalian centromere proteins binding: does DNA methylation have a role? J. Cell Sci. 109, 2199–2206 (1996).

    CAS  PubMed  Google Scholar 

  26. Mitchell, A.R., Nicol, L., Malloy, P. & Kipling, D. Novel structural organization of a Mus musculus DBA/2 chromosome shows a fixed position for the centromere. J. Cell Sci. 106, 79–85 (1993).

    CAS  PubMed  Google Scholar 

  27. Warburton, P.E. et al. Immunolocalization of CENP-A suggests a distinct nucleosomes structure at the inner kinetochore plate of active centromeres. Curr. Biol. 7, 901–904 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Ahmad, K. & Henikoff, S. Centromeres are specialized replication domains in heterochromatin. J. Cell Biol. 153, 101–110 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sullivan, B. & Karpen, G. Centromere identity in Drosophila is not determined in vivo by replication timing. J. Cell Biol. 154, 683–690 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim, S.M., Dubey, D.D. & Huberman, J.A. Early-replicating heterochromatin. Genes Dev. 17, 330–335 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tanaka, T., Cosma, M.P., Wirth, K. & Nasmyth, K. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98, 847–858 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Bernard, P. et al. Requirement of heterochromatin for cohesion at centromeres. Science 294, 2539–2542 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Shelby, R.D., Monier, K. & Sullivan, K.F. Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151, 1113–1118 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ando, S., Yang, H., Nozaki, N., Okazaki, T. & Yoda, K. CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol. Cell. Biol. 22, 2229–2241 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Uhlmann, F. The mechanism of sister chromatid cohesion. Exp. Cell Res. 296, 80–85 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Skora for technical assistance, and K. Scott, C. Vaziri, A. Dernburg, D. Allis, S. Erhardt and C. Yan for discussions and advice. We acknowledge K. Maggert for originally coining the term “centro-chromatin.” We are indebted to T. Jenuwein and A. Peters for use of their unique H3 Lys9-triMe antibodies. This work was supported by the following grants: US Department of Energy LDRD 366987 and US National Institutes of Health (NIH) R01 GM66272 (G.H.K.), and American Cancer Society IRG-72-001-29 and NIH R01 GM069514 (B.A.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beth A Sullivan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, B., Karpen, G. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11, 1076–1083 (2004). https://doi.org/10.1038/nsmb845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing