Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Assembling the mitochondrial outer membrane

Abstract

The general preprotein translocase of the outer mitochondrial membrane (TOM complex) transports virtually all mitochondrial precursor proteins, but cannot assemble outer-membrane precursors into functional complexes. A recently discovered sorting and assembly machinery (SAM complex) is essential for integration and assembly of outer-membrane proteins, revealing unexpected connections to mitochondrial evolution and morphology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein import pathways into mitochondria.
Figure 2: The protein import and sorting machineries of the mitochondrial outer membrane.
Figure 3: Conservation of β-barrel insertion into the outer membranes of mitochondria and Gram-negative bacteria.

Similar content being viewed by others

References

  1. Sickmann, A. et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. USA 100, 13207–13212 (2003).

    Article  CAS  Google Scholar 

  2. Taylor, S.W. et al. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol. 21, 281–286 (2003).

    Article  CAS  Google Scholar 

  3. Lill, R. & Kispal, G. Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem. Sci. 25, 352–356 (2000).

    Article  CAS  Google Scholar 

  4. Newmeyer, D.D. & Ferguson-Miller, S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481–490 (2003).

    Article  CAS  Google Scholar 

  5. Herrmann, J.M. & Neupert, W. Protein transport into mitochondria. Curr. Opin. Microbiol. 3, 210–214 (2000).

    Article  CAS  Google Scholar 

  6. Jensen, R.E. & Dunn, C.D. Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. Biochim. Biophys. Acta 1592, 25–34 (2002).

    Article  CAS  Google Scholar 

  7. Endo, T., Yamamoto, H. & Esaki, M. Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. J. Cell Sci. 116, 3259–3267 (2003).

    Article  CAS  Google Scholar 

  8. Koehler, C.M. New developments in mitochondrial assembly. Annu. Rev. Cell Dev. Biol. 20, 309–335 (2004).

    Article  CAS  Google Scholar 

  9. Wiedemann, N., Frazier, A.E. & Pfanner, N. The protein import machinery of mitochondria. J. Biol. Chem. 279, 14473–14476 (2004).

    Article  CAS  Google Scholar 

  10. Glick, B.S. et al. Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism. Cell 69, 809–822 (1992).

    Article  CAS  Google Scholar 

  11. Stuart, R.A. Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. Biochim. Biophys. Acta 1592, 79–87 (2002).

    Article  CAS  Google Scholar 

  12. Pfanner, N., Tropschug, M. & Neupert, W. Mitochondrial protein import: nucleoside triphosphates are involved in conferring import-competence to precursors. Cell 49, 815–823 (1987).

    Article  CAS  Google Scholar 

  13. Wiedemann, N., Pfanner, N. & Ryan, M.T. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 20, 951–960 (2001).

    Article  CAS  Google Scholar 

  14. Vial, S. et al. Assembly of Tim9 and Tim10 into a functional chaperone. J. Biol. Chem. 277, 36100–36108 (2002).

    Article  CAS  Google Scholar 

  15. Rehling, P. et al. Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299, 1747–1751 (2003).

    Article  CAS  Google Scholar 

  16. Gabriel, K., Buchanan, S.K. & Lithgow, T. The alpha and the beta: protein translocation across mitochondrial and plastid outer membranes. Trends Biochem. Sci. 26, 36–40 (2001).

    Article  CAS  Google Scholar 

  17. Matouschek, A. & Glick, B.S. Barreling through the outer membrane. Nat. Struct. Biol. 8, 284–286 (2001).

    Article  CAS  Google Scholar 

  18. Johnson, A.E. & Jensen, R.E. Barreling through the membrane. Nat. Struct. Mol. Biol. 11, 113–114 (2004).

    Article  CAS  Google Scholar 

  19. Keil, P. et al. Biogenesis of the mitochondrial receptor complex: two receptors are required for binding of MOM38 to the outer membrane surface. J. Biol. Chem. 268, 19177–19180 (1993).

    CAS  PubMed  Google Scholar 

  20. Krimmer, T. et al. Biogenesis of porin of the outer mitochondrial membrane involves an import pathway via receptors and the general import pore of the TOM complex. J. Cell Biol. 152, 289–300 (2001).

    Article  CAS  Google Scholar 

  21. Rapaport, D. et al. Structural requirements of Tom40 for assembly into preexisting TOM complexes of mitochondria. Mol. Biol. Cell 12, 1189–1198 (2001).

    Article  CAS  Google Scholar 

  22. Rapaport, D. Biogenesis of the mitochondrial TOM complex. Trends Biochem. Sci. 27, 191–197 (2002).

    Article  CAS  Google Scholar 

  23. Künkele, K.-P. et al. The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019 (1998).

    Article  Google Scholar 

  24. van Wilpe, S. et al. Tom22 is a multifunctional organizer of the mitochondrial pre-protein translocase. Nature 401, 485–489 (1999).

    Article  CAS  Google Scholar 

  25. Brix, J., Rüdiger, S., Bukau, B., Schneider-Mergener, J. & Pfanner, N. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J. Biol. Chem. 274, 16522–16530 (1999).

    Article  CAS  Google Scholar 

  26. Abe, Y. et al. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560 (2000).

    Article  CAS  Google Scholar 

  27. Hill, K. et al. Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521 (1998).

    Article  CAS  Google Scholar 

  28. Baker, K.P., Schaniel, A., Vestweber, D. & Schatz, G. A yeast mitochondrial outer membrane protein essential for protein import and cell viability. Nature 348, 605–609 (1990).

    Article  CAS  Google Scholar 

  29. Dietmeier, K. et al. Tom5 functionally links mitochondrial preprotein receptors to the general import pore. Nature 388, 195–200 (1997).

    Article  CAS  Google Scholar 

  30. Model, K. et al. Multistep assembly of the protein import channel of the mitochondrial outer membrane. Nat. Struct. Biol. 8, 361–370 (2001).

    Article  CAS  Google Scholar 

  31. Schneider, H. et al. Targeting of the master receptor MOM19 to mitochondria. Science 254, 1659–1662 (1991).

    Article  CAS  Google Scholar 

  32. Rapaport, D. & Neupert, W. Biogenesis of Tom40, core component of the TOM complex of mitochondria. J. Cell Biol. 146, 321–331 (1999).

    Article  CAS  Google Scholar 

  33. Taylor, R.D., McHale, B.J. & Nargang, F.E. Characterization of Neurospora crassa Tom40-deficient mutants and effect of specific mutations on Tom40 assembly. J. Biol. Chem. 278, 765–775 (2003).

    Article  CAS  Google Scholar 

  34. Wiedemann, N. et al. Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424, 565–571 (2003).

    Article  CAS  Google Scholar 

  35. Gratzer, S. et al. Mas37p, a novel receptor subunit for protein import into mitochondria. J. Cell Biol. 129, 25–34 (1995).

    Article  CAS  Google Scholar 

  36. Ryan, M.T., Müller, H. & Pfanner, N. Functional staging of ADP/ATP carrier trans-location across the outer mitochondrial membrane. J. Biol. Chem. 274, 20619–20627 (1999).

    Article  CAS  Google Scholar 

  37. Kozjak, V. et al. An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J. Biol. Chem. 278, 48520–48523 (2003).

    Article  CAS  Google Scholar 

  38. Paschen, S.A. et al. Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature 426, 862–866 (2003).

    Article  CAS  Google Scholar 

  39. Gentle, I., Gabriel, K., Beech, P., Waller, R. & Lithgow, T. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J. Cell Biol. 164, 19–24 (2004).

    Article  CAS  Google Scholar 

  40. Milenkovic, D. et al. Sam35 of the mitochondrial protein sorting and assembly machinery is a peripheral outer membrane protein essential for cell viability. J. Biol. Chem. 279, 22781–22785 (2004).

    Article  CAS  Google Scholar 

  41. Waizenegger, T. et al. Tob38, a novel essential component in the biogenesis of β-barrel proteins of mitochondria. EMBO Rep. 5, 704–709 (2004).

    Article  CAS  Google Scholar 

  42. Wiedemann, N et al. Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway. J. Biol. Chem. 279, 18188–18194 (2004).

    Article  CAS  Google Scholar 

  43. Hoppins, S.C. & Nargang, F.E. The Tim8–Tim13 complex of Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes. J. Biol. Chem. 279, 12396–12405 (2004).

    Article  CAS  Google Scholar 

  44. Smith, M., Hicks, S., Baker, K. & McCauley, R. Rupture of the mitochondrial outer membrane impairs porin assembly. J. Biol. Chem. 269, 28460–28464 (1994).

    CAS  PubMed  Google Scholar 

  45. Voulhoux, R., Bos, M.P., Geurtsen, J., Mols, M. & Tommassen, J. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299, 262–265 (2003).

    Article  CAS  Google Scholar 

  46. Genevrois, S., Steeghs, L., Roholl, P., Letesson, J.J. & van der Ley, P. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 22, 1780–1789 (2003).

    Article  CAS  Google Scholar 

  47. Voulhoux, R. & Tommassen, J. Omp85, an evolutionarily conserved bacterial protein involved in outer-membrane-protein assembly. Res. Microbiol. 155, 129–135 (2004).

    Article  CAS  Google Scholar 

  48. Schäfer, U., Beck, K. & Müller, M. Skp, a molecular chaperone of Gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274, 24567–24574 (1999).

    Article  Google Scholar 

  49. Harms, N. et al. The early interaction of the outer membrane protein PhoE with the periplasmic chaperone Skp occurs at the cytoplasmic membrane. J. Biol. Chem. 276, 18804–18811 (2001).

    Article  CAS  Google Scholar 

  50. Soll, J. & Schleiff, E. Protein import into chloroplasts. Nat. Rev. Mol. Cell Biol. 5, 198–208 (2004).

    Article  CAS  Google Scholar 

  51. Eckart, K. et al. A Toc75-like protein import channel is abundant in chloroplasts. EMBO Rep. 3, 557–562 (2002).

    Article  CAS  Google Scholar 

  52. Meisinger, C. et al. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71 (2004).

    Article  CAS  Google Scholar 

  53. Sogo, L.F. & Yaffe, M.P. Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J. Cell Biol. 126, 1361–1373 (1994).

    Article  CAS  Google Scholar 

  54. Boldogh, I.R. et al. A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell 14, 4618–4627 (2003).

    Article  CAS  Google Scholar 

  55. Pfanner, N. et al. Role of ATP in mitochondrial protein import: conformational alteration of a precursor protein can substitute for ATP requirement. J. Biol. Chem. 263, 4049–4051 (1988).

    CAS  PubMed  Google Scholar 

  56. Armstrong, L.C., Saenz, A.J. & Bornstein, P. Metaxin 1 interacts with metaxin 2, a novel related protein associated with the mammalian mitochondrial outer membrane. J. Cell. Biochem. 74, 11–22 (1999).

    Article  CAS  Google Scholar 

  57. Wang, X. et al. Metaxin is required for tumor necrosis factor-induced cell death. EMBO Rep. 2, 628–633 (2001).

    Article  CAS  Google Scholar 

  58. Ryan, M.T. Chaperones: inserting β-barrels into membranes. Curr. Biol. 14, R207–R209 (2004).

    Article  CAS  Google Scholar 

  59. Shaw, J.M. & Nunnari, J. Mitochondrial dynamics and division in budding yeast. Trends Cell Biol. 12, 178–184 (2002).

    Article  CAS  Google Scholar 

  60. Dimmer, K.S. et al. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 847–853 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to G. Schatz, F. Paltauf, S.D. Kohlwein, J. Soll, R.E. Jensen, K.Mihara, I. Gentle and M.T. Ryan for discussion and support in clarifying the nomenclature of the SAM subunits according to the rules of the Saccharomyces genome database (SGD). Work of the authors' laboratories was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 388, Gottfried Wilhelm Leibniz Programme, Max Planck Research Award, Alexander von Humboldt Foundation, Bundesministerium für Bildung und Forschung, the Fonds der Chemischen Industrie and the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nikolaus Pfanner or Chris Meisinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfanner, N., Wiedemann, N., Meisinger, C. et al. Assembling the mitochondrial outer membrane. Nat Struct Mol Biol 11, 1044–1048 (2004). https://doi.org/10.1038/nsmb852

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb852

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing