Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specific and potent RNAi in the nucleus of human cells

Abstract

RNA interference (RNAi) has become a research tool to control gene expression in various organisms and holds potential as a new therapeutic strategy. The mechanism of small interfering RNA (siRNA)-mediated RNAi involves target mRNA cleavage and destruction in the cytoplasm. We investigated siRNA-mediated induction of RNAi in the nucleus of human cells. Notably, we observed highly efficient knockdown of small nuclear RNA 7SK by siRNA. siRNA- and microRNA-programmed RNA-induced silencing complexes (RISCs) were present in both cytoplasmic and nuclear compartments and specifically cleaved their perfectly matched target RNA with markedly high efficiencies. Our results provide the first evidence that human RISCs programmed with siRNA are present in the nucleus and can knock down target RNA levels. These studies reveal new roles for the RNAi machinery in modulating post-transcriptional gene expression in the nucleus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: siRNA-targeted knockdown of 7SK snRNA.
Figure 2: siRNA-mediated knockdown of U6 snRNA.
Figure 3: Target RNA cleavage by nuclear and cytoplasmic RISC* in vitro.
Figure 4: RISC* components are present in nuclear and cytoplasmic compartments.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  2. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  Google Scholar 

  3. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  Google Scholar 

  4. Chiu, Y.L. & Rana, T.M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell 10, 549–561 (2002).

    Article  CAS  Google Scholar 

  5. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R. & Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563–574 (2002).

    Article  CAS  Google Scholar 

  6. Martinez, J. & Tuschl, T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980 (2004).

    Article  CAS  Google Scholar 

  7. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  Google Scholar 

  8. Song, J.J., Smith, S.K., Hannon, G.J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).

    Article  CAS  Google Scholar 

  9. Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).

    Article  CAS  Google Scholar 

  10. Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20, 6877–6888 (2001).

    Article  CAS  Google Scholar 

  11. Hutvagner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    Article  CAS  Google Scholar 

  12. Hammond, S.M., Boettcher, S., Caudy, A.A., Kobayashi, R. & Hannon, G.J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150 (2001).

    Article  CAS  Google Scholar 

  13. Caudy, A.A., Myers, M., Hannon, G.J. & Hammond, S.M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16, 2491–2496 (2002).

    Article  CAS  Google Scholar 

  14. He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    Article  CAS  Google Scholar 

  15. Zeng, Y., Yi, R. & Cullen, B.R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. USA 100, 9779–9784 (2003).

    Article  CAS  Google Scholar 

  16. Yekta, S., Shih, I.H. & Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    Article  CAS  Google Scholar 

  17. Billy, E., Brondani, V., Zhang, H., Muller, U. & Filipowicz, W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl. Acad. Sci. USA 98, 14428–14433 (2001).

    Article  CAS  Google Scholar 

  18. Zeng, Y. & Cullen, B.R. RNA interference in human cells is restricted to the cytoplasm. RNA 8, 855–860 (2002).

    Article  CAS  Google Scholar 

  19. Kawasaki, H. & Taira, K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res. 31, 700–707 (2003).

    Article  CAS  Google Scholar 

  20. Chiu, Y.L., Ali, A., Chu, C.Y., Cao, H. & Rana, T.M. Visualizing a correlation between siRNA localization, cellular uptake, and RNAi in living cells. Chem. Biol. 11, 1165–1175 (2004).

    Article  CAS  Google Scholar 

  21. Verdel, A. et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676 (2004).

    Article  CAS  Google Scholar 

  22. Ekwall, K. The RITS complex—a direct link between small RNA and heterochromatin. Mol. Cell 13, 304–305 (2004).

    Article  CAS  Google Scholar 

  23. Noma, K.I. et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat. Genet. 36, 1174–1180 (2004).

    Article  CAS  Google Scholar 

  24. Pal-Bhadra, M., Bhadra, U. & Birchler, J.A. RNAi related mechanisms affect both transcriptional and posttranscriptional transgene silencing in Drosophila. Mol. Cell 9, 315–327 (2002).

    Article  CAS  Google Scholar 

  25. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).

    Article  CAS  Google Scholar 

  26. Morris, K.V., Chan, S.W., Jacobsen, S.E. & Looney, D.J. Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305, 1289–1292 (2004).

    Article  CAS  Google Scholar 

  27. Kawasaki, H. & Taira, K. Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431, 211–217 (2004).

    Article  CAS  Google Scholar 

  28. Gurney, T., Jr. & Eliceiri, G.L. Intracellular distribution of low molecular weight RNA species in HeLa cells. J. Cell Biol. 87, 398–403 (1980).

    Article  CAS  Google Scholar 

  29. Wassarman, D.A. & Steitz, J.A. Structural analyses of the 7SK ribonucleoprotein (RNP), the most abundant human small RNP of unknown function. Mol. Cell. Biol. 11, 3432–3445 (1991).

    Article  CAS  Google Scholar 

  30. Matera, A.G. & Ward, D.C. Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells. J. Cell Biol. 121, 715–727 (1993).

    Article  CAS  Google Scholar 

  31. Yang, Z., Zhu, Q., Luo, K. & Zhou, Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414, 317–322 (2001).

    Article  CAS  Google Scholar 

  32. Gerbi, S.A. & Lange, T.S. All small nuclear RNAs (snRNAs) of the [U4/U6.U5] Tri-snRNP localize to nucleoli; identification of the nucleolar localization element of U6 snRNA. Mol. Biol. Cell 13, 3123–3137 (2002).

    Article  CAS  Google Scholar 

  33. Boelens, W.C., Palacios, I. & Mattaj, I.W. Nuclear retention of RNA as a mechanism for localization. RNA 1, 273–283 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiu, Y.L., Cao, H., Jacque, J.M., Stevenson, M. & Rana, T.M. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J. Virol. 78, 2517–2529 (2004).

    Article  CAS  Google Scholar 

  35. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M.C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).

    Article  CAS  Google Scholar 

  36. Vaucheret, H., Vazquez, F., Crete, P. & Bartel, D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18, 1187–1197 (2004).

    Article  CAS  Google Scholar 

  37. Aravin, A.A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11, 1017–1027 (2001).

    Article  CAS  Google Scholar 

  38. Sijen, T. & Plasterk, R.H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426, 310–314 (2003).

    Article  CAS  Google Scholar 

  39. Vastenhouw, N.L. et al. A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr. Biol. 13, 1311–1316 (2003).

    Article  CAS  Google Scholar 

  40. Wu-Scharf, D., Jeong, B., Zhang, C. & Cerutti, H. Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science 290, 1159–1162 (2000).

    Article  CAS  Google Scholar 

  41. Ketting, R.F., Haverkamp, T.H., van Luenen, H.G. & Plasterk, R.H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999).

    Article  CAS  Google Scholar 

  42. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    Article  CAS  Google Scholar 

  43. Kruger, W. & Benecke, B.J. Structural and functional analysis of a human 7 S K RNA gene. J. Mol. Biol. 195, 31–41 (1987).

    Article  CAS  Google Scholar 

  44. Murphy, S., Di Liegro, C. & Melli, M. The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter. Cell 51, 81–87 (1987).

    Article  CAS  Google Scholar 

  45. Shumyatsky, G.P., Tillib, S.V. & Kramerov, D.A. B2 RNA and 7SK RNA, RNA polymerase III transcripts, have a cap-like structure at their 5′ end. Nucleic Acids Res. 18, 6347–6351 (1990).

    Article  CAS  Google Scholar 

  46. Bindereif, A., Wolff, T. & Green, M.R. Discrete domains of human U6 snRNA required for the assembly of U4/U6 snRNP and splicing complexes. EMBO J. 9, 251–5 (1990).

    Article  CAS  Google Scholar 

  47. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  Google Scholar 

  48. Reynolds, A. et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Rana lab, C. Mello and P. Zamore for helpful discussions, and T.J. Richman for editorial assistance. We also thank T. Tuschl and G.J. Hannon for sharing valuable reagents. This work was supported by a grant from the US National Institutes of Health (AI43198) to T.M.R. G.B.R. is a recipient of a postdoctoral fellowship award from the Ontario HIV Treatment network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq M Rana.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robb, G., Brown, K., Khurana, J. et al. Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol 12, 133–137 (2005). https://doi.org/10.1038/nsmb886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing