Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATP hydrolysis cycle–dependent tail motions in cytoplasmic dynein

Abstract

The motor protein dynein is predicted to move the tail domain, a slender rod-like structure, relative to the catalytic head domain to carry out its power stroke. Here, we investigated ATP hydrolysis cycle–dependent conformational dynamics of dynein using fluorescence resonance energy transfer analysis of the dynein motor domain labeled with two fluorescent proteins. We show that dynein adopts at least two conformational states (states I and II), and the tail undergoes ATP-induced motions relative to the head domain during transitions between the two states. Our measurements also suggest that in the course of the ATP hydrolysis cycle of dynein, the tail motion from state I to state II takes place in the ATP-bound state, whereas the motion from state II to state I occurs in the ADP-bound state. The latter tail motion may correspond to the predicted power stroke of dynein.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Design of FRET-based sensors for detection of conformational states of dynein.
Figure 2: Detection of ATP-induced conformational changes in the dynein motor domain by means of FRET measurements.
Figure 3: Effect of nucleotides on the FRET efficiency between the BFP and GFP moieties within HG380B2 dynein.
Figure 4: Effect of ATPase active site mutations on nucleotide-induced changes in FRET within the HFG380B2 dynein.
Figure 5: Model of the ATP hydrolysis cycle–dependent tail motions in the dynein motor domain.

Similar content being viewed by others

References

  1. Paschal, B.M. & Vallee, R.B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330, 181–183 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Holzbaur, E.L. & Vallee, R.B. DYNEINS: molecular structure and cellular function. Annu. Rev. Cell Biol. 10, 339–372 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Vallee, R.B. & Sheetz, M.P. Targeting of motor proteins. Science 271, 1539–1544 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Karki, S. & Holzbaur, E.L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell Biol. 11, 45–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Vale, R.D. The molecular motor toolbox for intracellular transport. Cell 112, 467–480 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. King, S.J., Bonilla, M., Rodgers, M.E. & Schroer, T.A. Subunit organization in cytoplasmic dynein subcomplexes. Protein Sci. 11, 1239–1250 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  9. Koonce, M.P. & Samso, M. Overexpression of cytoplasmic dynein's globular head causes a collapse of the interphase microtubule network in Dictyostelium. Mol. Biol. Cell 7, 935–948 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nishiura, M. et al. A single-headed recombinant fragment of Dictyostelium cytoplasmic dynein can drive the robust sliding of microtubules. J. Biol. Chem. 279, 22799–22802 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Habura, A., Tikhonenko, I., Chisholm, R.L. & Koonce, M.P. Interaction mapping of a dynein heavy chain. Identification of dimerization and intermediate-chain binding domains. J. Biol. Chem. 274, 15447–15453 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Tynan, S.H., Gee, M.A. & Vallee, R.B. Distinct but overlapping sites within the cytoplasmic dynein heavy chain for dimerization and for intermediate chain and light intermediate chain binding. J. Biol. Chem. 275, 32769–32774 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Gee, M.A., Heuser, J.E. & Vallee, R.B. An extended microtubule-binding structure within the dynein motor domain. Nature 390, 636–639 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Koonce, M.P. Identification of a microtubule-binding domain in a cytoplasmic dynein heavy chain. J. Biol. Chem. 272, 19714–19718 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Samso, M., Radermacher, M., Frank, J. & Koonce, M.P. Structural characterization of a dynein motor domain. J. Mol. Biol. 276, 927–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Fan, J. & Amos, L.A. Antibodies to cytoplasmic dynein heavy chain map the surface and inhibit motility. J. Mol. Biol. 307, 1317–1327 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. King, S.M. AAA domains and organization of the dynein motor unit. J. Cell Sci. 113, 2521–2526 (2000).

    CAS  PubMed  Google Scholar 

  18. Burgess, S.A., Walker, M.L., Sakakibara, H., Oiwa, K. & Knight, P.J. The structure of dynein-c by negative stain electron microscopy. J. Struct. Biol. 146, 205–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Gibbons, I.R., Gibbons, B.H., Mocz, G. & Asai, D.J. Multiple nucleotide-binding sites in the sequence of dynein beta heavy chain. Nature 352, 640–643 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Ogawa, K. Four ATP-binding sites in the midregion of the beta heavy chain of dynein. Nature 352, 643–645 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Koonce, M.P., Grissom, P.M. & McIntosh, J.R. Dynein from Dictyostelium: primary structure comparisons between a cytoplasmic motor enzyme and flagellar dynein. J. Cell Biol. 119, 1597–1604 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Mocz, G. & Gibbons, I.R. Phase partition analysis of nucleotide binding to axonemal dynein. Biochemistry 35, 9204–9211 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Kon, T., Nishiura, M., Ohkura, R., Toyoshima, Y.Y. & Sutoh, K. Distinct functions of nucleotide-binding/hydrolysis sites in the four AAA modules of cytoplasmic dynein. Biochemistry 43, 11266–11274 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Silvanovich, A., Li, M.G., Serr, M., Mische, S. & Hays, T.S. The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding. Mol. Biol. Cell 14, 1355–1365 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reck-Peterson, S.L. & Vale, R.D. Molecular dissection of the roles of nucleotide binding and hydrolysis in dynein's AAA domains in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101, 1491–1495 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vallee, R.B. & Gee, M.A. Make room for dynein. Trends Cell Biol. 8, 490–494 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Vale, R.D. AAA proteins. Lords of the ring. J. Cell Biol. 150, F13–F19 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Asai, D.J. & Koonce, M.P. The dynein heavy chain: structure, mechanics and evolution. Trends Cell Biol. 11, 196–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Burgess, S.A., Walker, M.L., Sakakibara, H., Knight, P.J. & Oiwa, K. Dynein structure and power stroke. Nature 421, 715–718 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, K.A. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu. Rev. Biophys. Biophys. Chem. 14, 161–188 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Shimizu, T. & Johnson, K.A. Presteady state kinetic analysis of vanadate-induced inhibition of the dynein ATPase. J. Biol. Chem. 258, 13833–13840 (1983).

    CAS  PubMed  Google Scholar 

  32. Gibbons, I.R. et al. Photosensitized cleavage of dynein heavy chains. Cleavage at the “V1 site” by irradiation at 365 nm in the presence of ATP and vanadate. J. Biol. Chem. 262, 2780–2786 (1987).

    CAS  PubMed  Google Scholar 

  33. Takahashi, Y., Edamatsu, M. & Toyoshima, Y.Y. Multiple ATP-hydrolyzing sites that potentially function in cytoplasmic dynein. Proc. Natl. Acad. Sci. USA 101, 12865–12869 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ogura, T. & Wilkinson, A.J. AAA+ superfamily ATPases: common structure—diverse function. Genes Cells 6, 575–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Whiteheart, S.W. et al. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126, 945–954 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Babst, M., Wendland, B., Estepa, E.J. & Emr, S.D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, Q., Song, C., Yang, X. & Li, C.C. D1 ring is stable and nucleotide-independent, whereas D2 ring undergoes major conformational changes during the ATPase cycle of p97-VCP. J. Biol. Chem. 278, 32784–32793 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Bagshaw, C.R. et al. The magnesium ion-dependent adenosine triphosphatase of myosin. Two-step processes of adenosine triphosphate association and adenosine diphosphate dissociation. Biochem. J. 141, 351–364 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Holzbaur, E.L. & Johnson, K.A. ADP release is rate limiting in steady-state turnover by the dynein adenosinetriphosphatase. Biochemistry 28, 5577–5585 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Holzbaur, E.L. & Johnson, K.A. Microtubules accelerate ADP release by dynein. Biochemistry 28, 7010–7016 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Tani, T. & Kamimura, S. Dynein-ADP as a force-generating intermediate revealed by a rapid reactivation of flagellar axoneme. Biophys. J. 77, 1518–1527 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Holmes, K.C. The swinging lever-arm hypothesis of muscle contraction. Curr. Biol. 7, R112–R118 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T. & Sutoh, K. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Shih, W.M., Gryczynski, Z., Lakowicz, J.R. & Spudich, J.A. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell 102, 683–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Blaauw, M., Linskens, M.H. & van Haastert, P.J. Efficient control of gene expression by a tetracycline-dependent transactivator in single Dictyostelium discoideum cells. Gene 252, 71–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Sloboda, R.D. & Rosenbaum, J.L. Purification and assay of microtubule-associated proteins (MAPs). Methods Enzymol. 85, 409–416 (1982).

    Article  CAS  PubMed  Google Scholar 

  48. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P.J. Van Haastert for providing us with the tetracycline-regulated expression system. This work was partly supported by the Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), by the Grant-in-Aid for Scientific Research on Priority Areas from MEXT, by the Special Coordination Funds for Promoting Science and Technology from MEXT and by the Core Research for Evolutional Science and Technology (CREST) program grant from the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Sutoh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kon, T., Mogami, T., Ohkura, R. et al. ATP hydrolysis cycle–dependent tail motions in cytoplasmic dynein. Nat Struct Mol Biol 12, 513–519 (2005). https://doi.org/10.1038/nsmb930

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb930

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing