Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1

Abstract

J-proteins are obligate partners of Hsp70s, forming a ubiquitous class of molecular chaperone machinery. The ribosome-associated Hsp70 of yeast Ssb binds nascent polypeptides as they exit the ribosome. Here we report that the ribosome-associated J-protein Zuo1 is the partner of Ssb. However, Zuo1 efficiently stimulates the ATPase activity of Ssb only when in complex with another Hsp70, Ssz1. Ssz1 binds ATP, but none of the 11 different amino acid substitutions in the ATP-binding cleft affected Ssz1 function in vivo, suggesting that neither nucleotide binding nor hydrolysis is required. We propose that Ssz1's predominant function in the cell is to facilitate Zuo1's ability to function as a J-protein partner of Ssb on the ribosome, serving as an example of an Hsp70 family member that has evolved to carry out functions distinct from that of a chaperone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RAC, but not Zuo1, catalytically stimulates Ssb's ATPase activity.
Figure 2: H128Q-RAC fails to stimulate the ATPase activity of Ssb.
Figure 3: RAC does not stimulate Ssa1; Ssb1 is not stimulated by Ydj1 and Sis1.
Figure 4: SSB1 ATPase domain mutants rescue the phenotype of zuo1-H128Q.
Figure 5: Ssz1 binds ATP, but the interaction is unstable.
Figure 6: Effect of Ssz1's nucleotide-binding state on RAC's stimulation of Ssb.
Figure 7: Alteration of ATP-binding cleft of Ssz1 has no obvious effect on growth.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Hartl, F. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  2. Bukau, B., Deuerling, E., Pfund, C. & Craig, E.A. Getting newly synthesized proteins into shape. Cell 101, 119–122 (2000).

    Article  CAS  Google Scholar 

  3. Bukau, B. & Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366 (1998).

    Article  CAS  Google Scholar 

  4. Kelley, W. Molecular chaperones: How J domains turn on Hsp70s. Curr. Biol. 9, R305–R308 (1999).

    Article  CAS  Google Scholar 

  5. Kelley, W.L. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23, 222–227 (1998).

    Article  CAS  Google Scholar 

  6. D'Silva, P.D., Schilke, B., Walter, W., Andrew, A. & Craig, E.A. J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc. Natl. Acad. Sci. USA 100, 13839–13844 (2003).

    Article  CAS  Google Scholar 

  7. Yan, W. & Craig, E.A. The glycine-phenylalanine-rich region determines the specificity of the yeast Hsp40 Sis1. Mol. Cell. Biol. 19, 7751–7758 (1999).

    Article  CAS  Google Scholar 

  8. Tsai, J. & Douglas, M.G. A conserved HPD sequence of the J-domain is necessary for YDJ1 stimulation of Hsp70 ATPase activity at a site distinct from substrate binding. J. Biol. Chem. 271, 9347–9354 (1996).

    Article  CAS  Google Scholar 

  9. Wall, D., Zylicz, M. & Georgopoulos, C. The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J. Biol. Chem. 269, 5446–5451 (1994).

    CAS  Google Scholar 

  10. Walsh, P., Bursac, D., Law, Y.C., Cyr, D. & Lithgow, T. The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5, 567–571 (2004).

    Article  CAS  Google Scholar 

  11. Nelson, R.J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. & Craig, E.A. The translation machinery and seventy kilodalton heat shock protein cooperate in protein synthesis. Cell 71, 97–105 (1992).

    Article  CAS  Google Scholar 

  12. Pfund, C. et al. The Molecular chaperone SSB from S. cerevisiae is a component of the ribosome-nascent chain complex. EMBO J. 17, 3981–3989 (1998).

    Article  CAS  Google Scholar 

  13. Hundley, H. et al. The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain. Proc. Natl. Acad. Sci. USA 99, 4203–4208 (2002).

    Article  CAS  Google Scholar 

  14. Gautschi, M. et al. The yeast N(α)-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol. Cell. Biol. 23, 7403–7414 (2003).

    Article  CAS  Google Scholar 

  15. Siegers, K. et al. TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes. EMBO J. 22, 5230–5240 (2003).

    Article  CAS  Google Scholar 

  16. Craig, E.A., Eisenman, H.C. & Hundley, H.A. Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding? Curr. Opin. Microbiol. 6, 157–162 (2003).

    Article  CAS  Google Scholar 

  17. Rakwalska, M. & Rospert, S. The ribosome-bound chaperones RAC and Ssb1/2p are required for accrurate translation in Saccharomyces cerevisiae. Mol. Cell. Biol. 24, 9186–9197 (2004).

    Article  CAS  Google Scholar 

  18. Yan, W. et al. Zuotin, a ribosome-associated DnaJ molecular chaperone. EMBO J. 17, 4809–4817 (1998).

    Article  CAS  Google Scholar 

  19. Kim, S. & Craig, E. Broad sensitivity of Saccharomyces cerevisiae lacking ribosome-associated chaperone ssb or zuo1 to cations, including aminoglycosides. Eukaryot. Cell 4, 82–89 (2005).

    Article  CAS  Google Scholar 

  20. Gautschi, M. et al. RAC, a stable ribosome-associated complex in yeast formed by the DnaK- DnaJ homologs Ssz1p and Zuotin. Proc. Natl. Acad. Sci. USA 98, 3762–3767 (2001).

    Article  CAS  Google Scholar 

  21. Gautschi, M., Mun, A., Ross, S. & Rospert, S. A functional chaperone triad on the yeast ribosome. Proc. Natl. Acad. Sci. USA 99, 4209–4214 (2002).

    Article  CAS  Google Scholar 

  22. Pfund, C., Huang, P., Lopez-Hoyo, N. & Craig, E. Divergent functional properties of the ribosome-associated molecular chaperone Ssb compared to other Hsp70s. Mol. Biol. Cell 12, 3773–3782 (2001).

    Article  CAS  Google Scholar 

  23. Mayer, M.P. et al. Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol. 7, 586–593 (2000).

    Article  CAS  Google Scholar 

  24. Lopez-Buesa, P., Pfund, C. & Craig, E.A. The biochemical properties of the ATPase activity of a 70-kDa heat shock protein (Hsp70) are governed by the C-terminal domains. Proc. Natl. Acad. Sci. USA 95, 15253–15258 (1998).

    Article  CAS  Google Scholar 

  25. Suh, W-C. et al. Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc. Natl. Acad. Sci. USA 95, 15223–15228 (1998).

    Article  CAS  Google Scholar 

  26. Gässler, C.S. et al. Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. Proc. Natl. Acad. Sci. USA 95, 15229–15234 (1998).

    Article  Google Scholar 

  27. Russell, R., Jordan, R. & McMacken, R. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone. Biochemistry 37, 596–607 (1998).

    Article  CAS  Google Scholar 

  28. Ha, J-H. et al. Structure and mechanism of Hsp70 proteins. In Molecular Chaperones and Folding Catalysts (ed. Bukau, B.) 573–607 (Harwood Academic Publishers, Amsterdam, 1999).

    Google Scholar 

  29. Hallstrom, T.C., Katzmann, D.J., Torres, R.J., Sharp, W.J. & Moye-Rowley, W.S. Regulation of transcription factor Pdr1p function by an Hsp70 protein in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 1147–1155 (1998).

    Article  CAS  Google Scholar 

  30. Eisenman, H. & Craig, E. Activation of pleiotropic drug resistance by the J-protein and Hsp70-related proteins, Zuo1 and Ssz1. Mol. Microbiol. 53, 335–344 (2004).

    Article  CAS  Google Scholar 

  31. Steel, G.J., Fullerton, D.M., Tyson, J.R. & Stirling, C.J. Coordinated activation of Hsp70 chaperones. Science 303, 98–101 (2004).

    Article  CAS  Google Scholar 

  32. Nikolaidis, N. & Nei, M. Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes. Mol. Biol. Evol. 21, 498–505 (2004).

    Article  CAS  Google Scholar 

  33. Shaner, L., Trott, A., Goeckeler, J.L., Brodsky, J.L. & Morano, K.A. The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family. J. Biol. Chem. 279, 21992–22001 (2004).

    Article  CAS  Google Scholar 

  34. Ziegelhoffer, T., Lopez-Buesa, P. & Craig, E.A. The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydj1p and peptide substrates. J. Biol. Chem. 270, 10412–10419 (1995).

    Article  CAS  Google Scholar 

  35. Lopez, N., Aron, R. & Craig, E.A. Specificity of class II Hsp40 Sis1 in maintenance of yeast prion [RNQ(+)]. Mol. Biol. Cell 14, 1172–1181 (2003).

    Article  CAS  Google Scholar 

  36. Liberek, K., Marszalek, J., Ang, D. & Georgopoulos, C. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 88, 2874–2878 (1991).

    Article  CAS  Google Scholar 

  37. Zhou, Y.H., Zhang, X.P. & Ebright, R.H. Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase. Nucleic Acids Res. 19, 6052 (1991).

    Article  CAS  Google Scholar 

  38. Flaherty, K.M., DeLuca-Flaherty, C. & McKay, D.B. Three dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature 346, 623–628 (1990).

    Article  CAS  Google Scholar 

  39. Peitsch, M.C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem. Soc. Trans. 24, 274–279 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Pfund for generating the Ssb1 ATPase domain library and helpful comments on the manuscript, H. Hundley for initial characterization of several SSZ1 mutants, N. Lopez for providing Ydj1p and Sis1p, P. D'Silva for help in AMP-PNP purification, and S. Wilbanks for input on mutagenesis of Ssz1's ATPase domain. This work was supported by US National Institutes of Health grant GM-31107 (E.A.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A Craig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P., Gautschi, M., Walter, W. et al. The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1. Nat Struct Mol Biol 12, 497–504 (2005). https://doi.org/10.1038/nsmb942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing