Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The C-type lectin fold as an evolutionary solution for massive sequence variation

Abstract

Only few instances are known of protein folds that tolerate massive sequence variation for the sake of binding diversity. The most extensively characterized is the immunoglobulin fold. We now add to this the C-type lectin (CLec) fold, as found in the major tropism determinant (Mtd), a retroelement-encoded receptor-binding protein of Bordetella bacteriophage. Variation in Mtd, with its 1013 possible sequences, enables phage adaptation to Bordetella spp. Mtd is an intertwined, pyramid-shaped trimer, with variable residues organized by its CLec fold into discrete receptor-binding sites. The CLec fold provides a highly static scaffold for combinatorial display of variable residues, probably reflecting a different evolutionary solution for balancing diversity against stability from that in the immunoglobulin fold. Mtd variants are biased toward the receptor pertactin, and there is evidence that the CLec fold is used broadly for sequence variation by related retroelements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mtd variation and structure.
Figure 2: Variable region
Figure 3: Receptor-binding site.
Figure 4: Pertactin association.
Figure 5: Structure-based sequence alignment of Mtd with potentially variable proteins of related retroelements.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

Protein Data Bank

References

  1. Liu, M. et al. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295, 2091–2094 (2002).

    Article  CAS  Google Scholar 

  2. Liu, M. et al. Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism-switching cassettes. J. Bacteriol. 186, 1503–1517 (2004).

    Article  CAS  Google Scholar 

  3. Doulatov, S. et al. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431, 476–481 (2004).

    Article  CAS  Google Scholar 

  4. Chothia, C. & Lesk, A.M. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196, 901–917 (1987).

    Article  CAS  Google Scholar 

  5. Davis, M.M. & Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    Article  CAS  Google Scholar 

  6. Uhl, M.A. & Miller, J.F. Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J. 15, 1028–1036 (1996).

    Article  CAS  Google Scholar 

  7. Akerley, B.J., Cotter, P.A. & Miller, J.F. Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell 80, 611–620 (1995).

    Article  CAS  Google Scholar 

  8. Cotter, P.A. & Miller, J.F. A mutation in the Bordetella bronchiseptica bvgS gene results in reduced virulence and increased resistance to starvation, and identifies a new class of Bvg-regulated antigens. Mol. Microbiol. 24, 671–685 (1997).

    Article  CAS  Google Scholar 

  9. Emsley, P., Charles, I.G., Fairweather, N.F. & Isaacs, N.W. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 381, 90–92 (1996).

    Article  CAS  Google Scholar 

  10. Hester, G., Kaku, H., Goldstein, I.J. & Wright, C.S. Structure of mannose-specific snowdrop (Galanthus nivalis) lectin is representative of a new plant lectin family. Nat. Struct. Biol. 2, 472–479 (1995).

    Article  CAS  Google Scholar 

  11. Sauerborn, M.K., Wright, L.M., Reynolds, C.D., Grossmann, J.G. & Rizkallah, P.J. Insights into carbohydrate recognition by Narcissus pseudonarcissus lectin: the crystal structure at 2 A resolution in complex with alpha1–3 mannobiose. J. Mol. Biol. 290, 185–199 (1999).

    Article  CAS  Google Scholar 

  12. Weis, W.I., Kahn, R., Fourme, R., Drickamer, K. & Hendrickson, W.A. Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. Science 254, 1608–1615 (1991).

    Article  CAS  Google Scholar 

  13. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  14. Feinberg, H. et al. Structure of a C-type carbohydrate recognition domain from the macrophage mannose receptor. J. Biol. Chem. 275, 21539–21548 (2000).

    Article  CAS  Google Scholar 

  15. Batchelor, M. et al. Structural basis for recognition of the translocated intimin receptor (Tir) by intimin from enteropathogenic Escherichia coli. EMBO J. 19, 2452–2464 (2000).

    Article  CAS  Google Scholar 

  16. Luo, Y. et al. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405, 1073–1077 (2000).

    Article  CAS  Google Scholar 

  17. Drickamer, K. C-type lectin-like domains. Curr. Opin. Struct. Biol. 9, 585–590 (1999).

    Article  CAS  Google Scholar 

  18. Tormo, J., Natarajan, K., Margulies, D.H. & Mariuzza, R.A. Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Nature 402, 623–631 (1999).

    Article  CAS  Google Scholar 

  19. Weis, W.I., Drickamer, K. & Hendrickson, W.A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127–134 (1992).

    Article  CAS  Google Scholar 

  20. Takano, K., Yamagata, Y. & Yutani, K. A general rule for the relationship between hydrophobic effect and conformational stability of a protein: stability and structure of a series of hydrophobic mutants of human lysozyme. J. Mol. Biol. 280, 749–761 (1998).

    Article  CAS  Google Scholar 

  21. Mooi, F.R. et al. Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect. Immun. 66, 670–675 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Blum, M.L. et al. A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature 362, 603–609 (1993).

    Article  CAS  Google Scholar 

  23. Parge, H.E. et al. Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature 378, 32–38 (1995).

    Article  CAS  Google Scholar 

  24. Van der Ploeg, L.H. et al. An analysis of cosmid clones of nuclear DNA from Trypanosoma brucei shows that the genes for variant surface glycoproteins are clustered in the genome. Nucleic Acids Res. 10, 5905–5923 (1982).

    Article  CAS  Google Scholar 

  25. Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180 (2004).

    Article  CAS  Google Scholar 

  26. Bellotti, V., Mangione, P. & Merlini, G. Review: immunoglobulin light chain amyloidosis–the archetype of structural and pathogenic variability. J. Struct. Biol. 130, 280–289 (2000).

    Article  CAS  Google Scholar 

  27. Stevens, F.J. Four structural risk factors identify most fibril-forming kappa light chains. Amyloid 7, 200–211 (2000).

    Article  CAS  Google Scholar 

  28. Pokkuluri, P.R. et al. Increasing protein stability by polar surface residues: domain-wide consequences of interactions within a loop. Biophys. J. 82, 391–398 (2002).

    Article  CAS  Google Scholar 

  29. Helms, L.R. & Wetzel, R. Destabilizing loop swaps in the CDRs of an immunoglobulin VL domain. Protein Sci. 4, 2073–2081 (1995).

    Article  CAS  Google Scholar 

  30. Emsley, P., McDermott, G., Charles, I.G., Fairweather, N.F. & Isaacs, N.W. Crystallographic characterization of pertactin, a membrane-associated protein from Bordetella pertussis. J. Mol. Biol. 235, 772–773 (1994).

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  32. Terwilliger, T.C. Multiwavelength anomalous diffraction phasing of macromolecular structures: analysis of MAD data as single isomorphous replacement with anomalous scattering data using the MADMRG Program. Methods Enzymol. 276, 530–537 (1997).

    Article  CAS  Google Scholar 

  33. Winn, M.D. An overview of the CCP4 project in protein crystallography: an example of a collaborative project. J. Synchrotron Radiat. 10, 23–25 (2003).

    Article  CAS  Google Scholar 

  34. Perrakis, A. wARP: improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. Acta Crystallogr. D Biol. Crystallogr. 53, 448–455 (1997).

    Article  CAS  Google Scholar 

  35. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  36. Wiseman, T., Williston, S., Brandts, J.F. & Lin, L.N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a W.M. Keck Distinguished Young Scholars in Medicine Award to P.G., a University of California Discovery Grant to J.F.M. and US National Institutes of Health grants T32GM008326 and F31AI061840 to J.L.M. and F32AI49695 to J.A.L. Discussions with F. Stevens on antibody stability are appreciated, as is help with ITC from S. Bergqvist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partho Ghosh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Topology diagram of Mtd. (PDF 172 kb)

Supplementary Fig. 2

Mtd-P1 and Prn-E associate in a 3:1 complex (PDF 114 kb)

Supplementary Table 1

Data collection, phasing and refinement statistics for MAD (SeMet) structures (PDF 51 kb)

Supplementary Table 2

Data collection and refinement statistics (molecular replacement) (PDF 47 kb)

Supplementary Data (PDF 49 kb)

Supplementary Methods (PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, S., Miller, J., Lawton, J. et al. The C-type lectin fold as an evolutionary solution for massive sequence variation. Nat Struct Mol Biol 12, 886–892 (2005). https://doi.org/10.1038/nsmb992

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing