Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor

Abstract

The forkhead box O (FOXO) transcription factor FOXO1 functions as a tumor suppressor by regulating expression of genes involved in apoptosis, cell cycle arrest and oxidative detoxification. Here, we demonstrate that cyclin-dependent kinase 1 (CDK1) specifically phosphorylates FOXO1 at serine 249 (S249) in vitro and in vivo. Coimmunoprecipitation assays demonstrate that both endogenous CDK1 and ectopically expressed CDK1 form a protein complex with FOXO1 in prostate cancer (PCa) cells. In vitro protein binding assays reveal that CDK1 interacts directly with FOXO1. Accordingly, overexpression of CDK1 inhibits the transcriptional activity of FOXO1 in PCa cells through S249 phosphorylation on FOXO1. Consistent with the roles of FOXO3a and FOXO4 (two other members of the FOXO family) in cell cycle regulation, forced expression of FOXO1 causes a delay in the transition from G2 to M phase. This effect is blocked completely by overexpression of CDK1 and cyclin B1. Ectopic expression of constitutively active CDK1 also inhibits FOXO1-induced apoptosis in PCa cells. Moreover, we demonstrate that the inhibitory effect of FOXO1 on Ras oncogene-induced colony formation in fibroblasts is diminished by overexpression of CDK1. Given that CDK1 and cyclin B1 are often overexpressed in human cancers including PCa, our findings suggest that aberrant activation of CDK1 may contribute to tumorigenesis by promoting cell proliferation and survival via phosphorylation and inhibition of FOXO1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aoki M, Jiang H, Vogt PK . (2004). Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci USA 101: 13613–13617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biggs III WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC . (1999). Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 96: 7421–7426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borkhardt A, Repp R, Haas OA, Leis T, Harbott J, Kreuder J et al. (1997). Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene 14: 195–202.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Park J, Tran H, Hu LS, Hemmings BA, Greenberg ME . (2001). Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 21: 952–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Xu Y, Yuan X, Bubley GJ, Balk SP . (2006). Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci USA 103: 15969–15974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ . (2000). Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Curr Biol 10: 1201–1204.

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK et al. (2003). Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet 72: 270–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Zapico ME, Mladek A, Ellenrieder V, Folch-Puy E, Miller L, Urrutia R . (2003). An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. EMBO J 22: 4748–4758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa-Hibi Y, Yoshida-Araki K, Ohta T, Ikeda K, Motoyama N . (2002). FOXO forkhead transcription factors induce G(2)–M checkpoint in response to oxidative stress. J Biol Chem 277: 26729–26732.

    Article  CAS  PubMed  Google Scholar 

  • Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher III FJ, Emanuel BS et al. (1993). Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5: 230–235.

    Article  CAS  PubMed  Google Scholar 

  • Gilley J, Coffer PJ, Ham J . (2003). FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162: 613–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goga A, Yang D, Tward AD, Morgan DO, Bishop JM . (2007). Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med 13: 820–827.

    Article  CAS  PubMed  Google Scholar 

  • Gray NS, Wodicka L, Thunnissen AM, Norman TC, Kwon S, Espinoza FH et al. (1998). Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281: 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Evan GI . (2002). A matter of life and death. Cancer Cell 1: 19–30.

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Brunet A . (2005). FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24: 7410–7425.

    Article  CAS  PubMed  Google Scholar 

  • Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA . (1997). AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 90: 3714–3719.

    CAS  PubMed  Google Scholar 

  • Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY et al. (2004). IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117: 225–237.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Cheville JC, Pan Y, Roche PC, Schmidt LJ, Tindall DJ . (2001). PTEN induces chemosensitivity in PTEN-mutated prostate cancer cells by suppression of Bcl-2 expression. J Biol Chem 276: 38830–38836.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Muddiman DC, Tindall DJ . (2004a). Androgens negatively regulate forkhead transcription factor FKHR (FOXO1) through a proteolytic mechanism in prostate cancer cells. J Biol Chem 279: 13866–13877.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Regan KM, Lou Z, Chen J, Tindall DJ . (2006). CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314: 294–297.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM et al. (2005). Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA 102: 1649–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Tindall DJ . (2007). Dynamic FoxO transcription factors. J Cell Sci 120: 2479–2487.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Zegarra-Moro OL, Benson D, Tindall DJ . (2004b). Androgens repress Bcl-2 expression via activation of the retinoblastoma (RB) protein in prostate cancer cells. Oncogene 23: 2161–2176.

    Article  CAS  PubMed  Google Scholar 

  • Kallakury BV, Sheehan CE, Ambros RA, Fisher HA, Kaufman Jr RP, Muraca PJ et al. (1998). Correlation of p34cdc2 cyclin-dependent kinase overexpression, CD44s downregulation, and HER-2/neu oncogene amplification with recurrence in prostatic adenocarcinomas. J Clin Oncol 16: 1302–1309.

    Article  CAS  PubMed  Google Scholar 

  • Kallakury BV, Sheehan CE, Ambros RA, Fisher HA, Kaufman Jr RP, Ross JS . (1997). The prognostic significance of p34cdc2 and cyclin D1 protein expression in prostate adenocarcinoma. Cancer 80: 753–763.

    Article  CAS  PubMed  Google Scholar 

  • Knockaert M, Greengard P, Meijer L . (2002). Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci 23: 417–425.

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, De Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM . (1999). Direct control of the forkhead transcription factor AFX by protein kinase B. Nature 398: 630–634.

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, Medema RH, Glassford J, Essers MA, Dijkers PF, Coffer PJ et al. (2002). Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol 22: 2025–2036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddison LA, Huss WJ, Barrios RM, Greenberg NM . (2004). Differential expression of cell cycle regulatory molecules and evidence for a ‘cyclin switch’ during progression of prostate cancer. Prostate 58: 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Mashal RD, Lester S, Corless C, Richie JP, Chandra R, Propert KJ et al. (1996). Expression of cell cycle-regulated proteins in prostate cancer. Cancer Res 56: 4159–4163.

    CAS  PubMed  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald III ER, Hurov KE, Luo J et al. (2007). ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166.

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A . (2003). Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA 100: 11285–11290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medema RH, Kops GJ, Bos JL, Burgering BM . (2000). AFX-like forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404: 782–787.

    Article  CAS  PubMed  Google Scholar 

  • Modur V, Nagarajan R, Evers BM, Milbrandt J . (2002). FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem 277: 47928–47937.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura N, Ramaswamy S, Vazquez F, Signoretti S, Loda M, Sellers WR . (2000). Forkhead transcription factors are critical effectors of cell death and cell cycle arrest downstream of PTEN. Mol Cell Biol 20: 8969–8982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozen M, Ittmann M . (2005). Increased expression and activity of CDC25C phosphatase and an alternatively spliced variant in prostate cancer. Clin Cancer Res 11: 4701–4706.

    Article  CAS  PubMed  Google Scholar 

  • Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z et al. (2007). FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128: 309–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker LL, Piwnica-Worms H . (1992). Inactivation of the p34cdc2–cyclin B complex by the human WEE1 tyrosine kinase. Science 257: 1955–1957.

    Article  CAS  PubMed  Google Scholar 

  • Pinkston-Gosse J, Kenyon C . (2007). DAF-16/FOXO targets genes that regulate tumor growth in Caenorhabditis elegans. Nat Genet 39: 1403–1409.

    Article  CAS  PubMed  Google Scholar 

  • Pinkston JM, Garigan D, Hansen M, Kenyon C . (2006). Mutations that increase the life span of C.elegans inhibit tumor growth. Science 313: 971–975.

    Article  CAS  PubMed  Google Scholar 

  • Plas DR, Thompson CB . (2003). Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. J Biol Chem 278: 12361–12366.

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR . (2002). A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2: 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Rena G, Guo S, Cichy SC, Unterman TG, Cohen P . (1999). Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274: 17179–17183.

    Article  CAS  PubMed  Google Scholar 

  • Rena G, Woods YL, Prescott AR, Peggie M, Unterman TG, Williams MR et al. (2002). Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 21: 2263–2271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K et al. (2007). Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448: 811–815.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW et al. (2002). Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22: 7842–7852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J . (2004). Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117: 211–223.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (2004). Living with or without cyclins and cyclin-dependent kinases. Genes Dev 18: 2699–2711.

    Article  CAS  PubMed  Google Scholar 

  • Soria JC, Jang SJ, Khuri FR, Hassan K, Liu D, Hong WK et al. (2000). Overexpression of cyclin B1 in early-stage non-small cell lung cancer and its clinical implication. Cancer Res 60: 4000–4004.

    CAS  PubMed  Google Scholar 

  • Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM et al. (2002). The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 168: 5024–5031.

    Article  CAS  PubMed  Google Scholar 

  • Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM et al. (2006). Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 66: 2815–2825.

    Article  CAS  PubMed  Google Scholar 

  • Tang ED, Nunez G, Barr FG, Guan KL . (1999). Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274: 16741–16746.

    Article  CAS  PubMed  Google Scholar 

  • Tran H, Brunet A, Grenier JM, Datta SR, Fornace Jr AJ, DiStefano PS et al. (2002). DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science 296: 530–534.

    Article  CAS  PubMed  Google Scholar 

  • Woods YL, Rena G, Morrice N, Barthel A, Becker W, Guo S et al. (2001). The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem J 355: 597–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Dong X, Liu W, Chen J . (2006). Characterization of CHEK2 mutations in prostate cancer. Hum Mutat 27: 742–747.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL . (1998). The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 95: 15587–15591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank DJ Tindall, KL Guan, H Piwnica-Worms, R Urrutia and F Farassati for plasmids and reagents, members of the Huang Lab for their stimulating discussion, V Shridhar and K Schwertfeger for their critical reading of the manuscript and Jacie Maguire for her assistance in the preparation of the manuscript. This work was supported in part by funds from the Department of Defense, USA (W81XWH-07-1-0137), and the Brainstorm Award from the University of Minnesota Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Huang.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Kao, T. & Huang, H. CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor. Oncogene 27, 4733–4744 (2008). https://doi.org/10.1038/onc.2008.104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.104

Keywords

This article is cited by

Search

Quick links