Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

FOXO-binding partners: it takes two to tango

Abstract

Modulation FOXO transcription factor activities can lead to a variety of cellular outputs resulting in changes in proliferation, apoptosis, differentiation and metabolic responses. Although FOXO proteins all contain an identical DNA-binding domain their cellular functions appear to be distinct, as exemplified by differences in the phenotype of Foxo1, Foxo3 and Foxo4 null mutant mice. While some of these differences may be attributable to the differential expression patterns of these transcription factors, many cells and tissues express several FOXO isoforms. Recently it has become clear that FOXO proteins can regulate transcriptional responses independently of direct DNA-binding. It has been demonstrated that FOXOs can associate with a variety of unrelated transcription factors, regulating activation or repression of diverse target genes. The complement of transcription factors expressed in a particular cell type is thus critical in determining the functional end point of FOXO activity. These interactions greatly expand the possibilities for FOXO-mediated regulation of transcriptional programmes. This review details currently described FOXO-binding partners and examines the role of these interactions in regulating cell fate decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Bruno F. Santos, Inês Grenho, … Wolfgang Link

References

  • Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC . (2007). Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem 282: 27298–27305.

    Article  CAS  PubMed  Google Scholar 

  • Arce L, Yokoyama NN, Waterman ML . (2006). Diversity of LEF/TCF action in development and disease. Oncogene 25: 7492–7504.

    Article  CAS  PubMed  Google Scholar 

  • Armoni M, Harel C, Karni S, Chen H, Bar-Yoseph F, Ver MR et al. (2006). FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J Biol Chem 281: 19881–19891.

    Article  CAS  PubMed  Google Scholar 

  • Armoni M, Harel C, Karnieli E . (2007). Transcriptional regulation of the GLUT4 gene: from PPAR-gamma and FOXO1 to FFA and inflammation. Trends Endocrinol Metab 18: 100–107.

    Article  CAS  PubMed  Google Scholar 

  • Armoni M, Kritz N, Harel C, Bar-Yoseph F, Chen H, Quon MJ et al. (2003). Peroxisome proliferator-activated receptor-gamma represses GLUT4 promoter activity in primary adipocytes, and rosiglitazone alleviates this effect. J Biol Chem 278: 30614–30623.

    Article  CAS  PubMed  Google Scholar 

  • Barr FG . (2001). Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20: 5736–5746.

    Article  CAS  PubMed  Google Scholar 

  • Barthel A, Schmoll D, Unterman TG . (2005). FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16: 183–189.

    Article  CAS  PubMed  Google Scholar 

  • Benson GV, Lim H, Paria BC, Satokata I, Dey SK, Maas RL . (1996). Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development 122: 2687–2696.

    CAS  PubMed  Google Scholar 

  • Berg AH, Combs TP, Du X, Brownlee M, Scherer PE . (2001). The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat Med 7: 947–953.

    Article  CAS  PubMed  Google Scholar 

  • Biggins JB, Koh JT . (2007). Chemical biology of steroid and nuclear hormone receptors. Curr Opin Chem Biol 11: 99–110.

    Article  CAS  PubMed  Google Scholar 

  • Birkenkamp KU, Coffer PJ . (2003). FOXO transcription factors as regulators of immune homeostasis: molecules to die for? J Immunol 171: 1623–1629.

    Article  CAS  PubMed  Google Scholar 

  • Bocchinfuso WP, Korach KS . (1997). Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia 2: 323–334.

    Article  CAS  PubMed  Google Scholar 

  • Brar AK, Frank GR, Kessler CA, Cedars MI, Handwerger S . (1997). Progesterone-dependent decidualization of the human endometrium is mediated by cAMP. Endocrine 6: 301–307.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  • Buzzio OL, Lu Z, Miller CD, Unterman TG, Kim JJ . (2006). FOXO1A differentially regulates genes of decidualization. Endocrinology 147: 3870–3876.

    Article  CAS  PubMed  Google Scholar 

  • Christian M, Zhang X, Schneider-Merck T, Unterman TG, Gellersen B, White JO et al. (2002). Cyclic AMP-induced forkhead transcription factor, FKHR, cooperates with CCAAT/enhancer-binding protein beta in differentiating human endometrial stromal cells. J Biol Chem 277: 20825–20832.

    Article  CAS  PubMed  Google Scholar 

  • Deroo BJ, Korach KS . (2006). Estrogen receptors and human disease. J Clin Invest 116: 561–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong XY, Chen C, Sun X, Guo P, Vessella RL, Wang RX et al. (2006). FOXO1A is a candidate for the 13q14 tumor suppressor gene inhibiting androgen receptor signaling in prostate cancer. Cancer Res 66: 6998–7006.

    Article  CAS  PubMed  Google Scholar 

  • Dowell P, Otto TC, Adi S, Lane MD . (2003). Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem 278: 45485–45491.

    Article  CAS  PubMed  Google Scholar 

  • Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC . (2005). Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308: 1181–1184.

    Article  CAS  PubMed  Google Scholar 

  • Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL et al. (2004). FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23: 4802–4812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Yanase T, Morinaga H, Okabe T, Nomura M, Daitoku H et al. (2007). Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor. J Biol Chem 282: 7329–7338.

    Article  CAS  PubMed  Google Scholar 

  • Fievet C, Fruchart JC, Staels B . (2006). PPAR alpha and PPAR gamma dual agonists for the treatment of type 2 diabetes and the metabolic syndrome. Curr Opin Pharmacol 6: 606–614.

    Article  CAS  PubMed  Google Scholar 

  • Finck BN, Kelly DP . (2006). PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116: 615–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foucher I, Volovitch M, Frain M, Kim JJ, Souberbielle JC, Gan L et al. (2002). Hoxa5 overexpression correlates with IGFBP1 upregulation and postnatal dwarfism: evidence for an interaction between Hoxa5 and Forkhead box transcription factors. Development 129: 4065–4074.

    CAS  PubMed  Google Scholar 

  • Gao W, Bohl CE, Dalton JT . (2005). Chemistry and structural biology of androgen receptor. Chem Rev 105: 3352–3370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giudice LC, Dsupin BA, Jin IH, Vu TH, Hoffman AR . (1993). Differential expression of messenger ribonucleic acids encoding insulin-like growth factors and their receptors in human uterine endometrium and decidua. J Clin Endocrinol Metab 76: 1115–1122.

    CAS  PubMed  Google Scholar 

  • Glass DA, Karsenty G . (2007). In vivo analysis of Wnt signaling in bone. Endocrinology 148: 2630–2634.

    Article  CAS  PubMed  Google Scholar 

  • Gomis RR, Alarcon C, He W, Wang Q, Seoane J, Lash A et al. (2006a). A FoxO-Smad synexpression group in human keratinocytes. Proc Natl Acad Sci USA 103: 12747–12752.

    Article  CAS  PubMed  Google Scholar 

  • Gomis RR, Alarcon C, Nadal C, Van PC, Massague J . (2006b). C/EBP beta at the core of the TGF beta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10: 203–214.

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb S, Ruvkun G . (1994). daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics 137: 107–120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grinius L, Kessler C, Schroeder J, Handwerger S . (2006). Forkhead transcription factor FOXO1A is critical for induction of human decidualization. J Endocrinol 189: 179–187.

    Article  CAS  PubMed  Google Scholar 

  • Hanashima C, Li SC, Shen L, Lai E, Fishell G . (2004). Foxg1 suppresses early cortical cell fate. Science 303: 56–59.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Takahashi M, Kimura K, Nishida W, Saga H, Sobue K . (1999). Changes in the balance of phosphoinositide 3-kinase/protein kinase B (Akt) and the mitogen-activated protein kinases (ERK/p38MAPK) determine a phenotype of visceral and vascular smooth muscle cells. J Cell Biol 145: 727–740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota K, Daitoku H, Matsuzaki H, Araya N, Yamagata K, Asada S et al. (2003). Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor. J Biol Chem 278: 13056–13060.

    Article  CAS  PubMed  Google Scholar 

  • Hosaka T, Biggs III WH, Tieu D, Boyer AD, Varki NM, Cavenee WK et al. (2004). Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci USA 101: 2975–2980.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Muddiman DC, Tindall DJ . (2004). Androgens negatively regulate forkhead transcription factor FKHR (FOXO1) through a proteolytic mechanism in prostate cancer cells. J Biol Chem 279: 13866–13877.

    Article  CAS  PubMed  Google Scholar 

  • Kamei Y, Mizukami J, Miura S, Suzuki M, Takahashi N, Kawada T et al. (2003). A forkhead transcription factor FKHR upregulates lipoprotein lipase expression in skeletal muscle. FEBS Lett 536: 232–236.

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Buzzio OL, Li S, Lu Z . (2005). Role of FOXO1A in the regulation of insulin-like growth factor-binding protein-1 in human endometrial cells: interaction with progesterone receptor. Biol Reprod 73: 833–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JJ, Taylor HS, Akbas GE, Foucher I, Trembleau A, Jaffe RC et al. (2003). Regulation of insulin-like growth factor binding protein-1 promoter activity by FKHR and HOXA10 in primate endometrial cells. Biol Reprod 68: 24–30.

    Article  CAS  PubMed  Google Scholar 

  • Kitamura T, Kitamura YI, Funahashi Y, Shawber CJ, Castrillon DH, Kollipara R et al. (2007). A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J Clin Invest 117: 2477–2485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodama S, Koike C, Negishi M, Yamamoto Y . (2004). Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol 24: 7931–7940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kortylewski M, Feld F, Kruger KD, Bahrenberg G, Roth RA, Joost HG et al. (2003). Akt modulates STAT3-mediated gene expression through a FKHR (FOXO1a)-dependent mechanism. J Biol Chem 278: 5242–5249.

    Article  CAS  PubMed  Google Scholar 

  • Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP et al. (2000). Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 14: 1343–1352.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen PL, Albert PS, Riddle DL . (1995). Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139: 1567–1583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Lee H, Guo S, Unterman TG, Jenster G, Bai W . (2003). AKT-independent protection of prostate cancer cells from apoptosis mediated through complex formation between the androgen receptor and FKHR. Mol Cell Biol 23: 104–118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li P, Nicosia SV, Bai W . (2001). Antagonism between PTEN/MMAC1/TEP-1 and androgen receptor in growth and apoptosis of prostatic cancer cells. J Biol Chem 276: 20444–20450.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang Z, Kong D, Murthy S, Dou QP, Sheng S et al. (2007). Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3,3′-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J Biol Chem 282: 21542–21550.

    Article  CAS  PubMed  Google Scholar 

  • Liu ZP, Wang Z, Yanagisawa H, Olson EN . (2005). Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin. Dev Cell 9: 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Luo D, Renault VM, Rando TA . (2005). The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 16: 612–622.

    Article  CAS  PubMed  Google Scholar 

  • Medema RH, Kops GJ, Bos JL, Burgering BM . (2000). AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404: 782–787.

    Article  CAS  PubMed  Google Scholar 

  • Nakae J, Biggs III WH, Kitamura T, Cavenee WK, Wright CV, Arden KC et al. (2002). Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet 32: 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Nakae J, Kitamura T, Kitamura Y, Biggs III WH, Arden KC, Accili D . (2003). The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 4: 119–129.

    Article  CAS  PubMed  Google Scholar 

  • Nakae J, Kitamura T, Silver DL, Accili D . (2001). The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 108: 1359–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nechamen CA, Thomas RM, Dias JA . (2007). APPL1, APPL2, Akt2 and FOXO1a interact with FSHR in a potential signaling complex. Mol Cell Endocrinol 260–262: 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Nerlov C . (2007). The C/EBP family of transcription factors: a paradigm for interaction between gene expression and proliferation control. Trends Cell Biol 17: 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA et al. (1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C.elegans. Nature 389: 994–999.

    Article  CAS  PubMed  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR . (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84: 767–801.

    Article  CAS  PubMed  Google Scholar 

  • Paik JH, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z et al. (2007). FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128: 309–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardee K, Reinking J, Krause H . (2004). Nuclear hormone receptors, metabolism, and aging: what goes around comes around. Transcription factors link lipid metabolism and aging-related processes. Sci Aging Knowledge Environ 2004: re8.

    Article  PubMed  Google Scholar 

  • Park KW, Kim DH, You HJ, Sir JJ, Jeon SI, Youn SW et al. (2005). Activated forkhead transcription factor inhibits neointimal hyperplasia after angioplasty through induction of p27. Arterioscler Thromb Vasc Biol 25: 742–747.

    Article  CAS  PubMed  Google Scholar 

  • Patterson GI, Koweek A, Wong A, Liu Y, Ruvkun G . (1997). The DAF-3 Smad protein antagonizes TGF-beta-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev 11: 2679–2690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, hado De OR et al. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429: 771–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilch PF, Bergenhem N . (2006). Pharmacological targeting of adipocytes/fat metabolism for treatment of obesity and diabetes. Mol Pharmacol 70: 779–785.

    Article  CAS  PubMed  Google Scholar 

  • Plevin MJ, Mills MM, Ikura M . (2005). The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci 30: 66–69.

    Article  CAS  PubMed  Google Scholar 

  • Pohnke Y, Kempf R, Gellersen B . (1999). CCAAT/enhancer-binding proteins are mediators in the protein kinase A-dependent activation of the decidual prolactin promoter. J Biol Chem 274: 24808–24818.

    Article  CAS  PubMed  Google Scholar 

  • Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F et al. (2003). Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423: 550–555.

    Article  CAS  PubMed  Google Scholar 

  • Qiao L, Shao J . (2006). SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 281: 39915–39924.

    Article  CAS  PubMed  Google Scholar 

  • Qu S, Su D, Altomonte J, Kamagate A, He J, Perdomo G et al. (2007). PPAR{alpha} mediates the hypolipidemic action of fibrates by antagonizing FoxO1. Am J Physiol Endocrinol Metab 292: E421–E434.

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR . (2002). A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2: 81–91.

    Article  CAS  PubMed  Google Scholar 

  • Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL . (1996). Control of C. elegans larval development by neuronal expression of a TGF-beta homolog. Science 274: 1389–1391.

    Article  CAS  PubMed  Google Scholar 

  • Rudd MD, Gonzalez-Robayna I, Hernandez-Gonzalez I, Weigel NL, Bingman III WE, Richards JS . (2007). Constitutively active FOXO1a and a DNA-binding domain mutant exhibit distinct coregulatory functions to enhance progesterone receptor A activity. J Mol Endocrinol 38: 673–690.

    Article  CAS  PubMed  Google Scholar 

  • Samuel VT, Choi CS, Phillips TG, Romanelli AJ, Geisler JG, Bhanot S et al. (2006). Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes 55: 2042–2050.

    Article  CAS  PubMed  Google Scholar 

  • Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH et al. (2006). PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 103: 16260–16265.

    Article  CAS  PubMed  Google Scholar 

  • Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A et al. (2004). Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117: 399–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling MM, Oeser JK, Boustead JN, Flemming BP, O'Brien RM . (2006). Gluconeogenesis: re-evaluating the FOXO1-PGC-1alpha connection. Nature 443: E10–E11.

    Article  CAS  PubMed  Google Scholar 

  • Schuur ER, Loktev AV, Sharma M, Sun Z, Roth RA, Weigel RJ . (2001). Ligand-dependent interaction of estrogen receptor-alpha with members of the forkhead transcription factor family. J Biol Chem 276: 33554–33560.

    Article  CAS  PubMed  Google Scholar 

  • Sekine K, Chen YR, Kojima N, Ogata K, Fukamizu A, Miyajima A . (2007). Foxo1 links insulin signaling to C/EBP alpha and regulates gluconeogenesis during liver development. EMBO J 26: 3607–3615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seoane J, Le HV, Shen L, Anderson SA, Massague J . (2004). Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117: 211–223.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Massague J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  PubMed  Google Scholar 

  • So CW, Cleary ML . (2003). Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood 101: 633–639.

    Article  CAS  PubMed  Google Scholar 

  • van der Horst A, Burgering BM . (2007). Stressing the role of FoxO proteins in lifespan and disease. Nat Rev Mol Cell Biol 8: 440–450.

    Article  CAS  PubMed  Google Scholar 

  • Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD et al. (1995). Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269: 1108–1112.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang DZ, Hockemeyer D, McAnally J, Nordheim A, Olson EN . (2004). Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428: 185–189.

    Article  CAS  PubMed  Google Scholar 

  • Yamamura Y, Lee WL, Inoue K, Ida H, Ito Y . (2006). RUNX3 cooperates with Foxo3a to induce apoptosis in gastric cancer cells. J Biol Chem 281: 5267–5276.

    Article  CAS  PubMed  Google Scholar 

  • Zhao HH, Herrera RE, Coronado-Heinsohn E, Yang MC, Ludes-Meyers JH, Seybold-Tilson KJ et al. (2001). Forkhead homologue in rhabdomyosarcoma functions as a bifunctional nuclear receptor-interacting protein with both coactivator and corepressor functions. J Biol Chem 276: 27907–27912.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Kristan van der Vos was supported by a grant from the Dutch Scientific Organization (NWO 917.36.316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Coffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Vos, K., Coffer, P. FOXO-binding partners: it takes two to tango. Oncogene 27, 2289–2299 (2008). https://doi.org/10.1038/onc.2008.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.22

Keywords

This article is cited by

Search

Quick links