Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death

Abstract

Micro (mi)RNAs are small, highly conserved noncoding RNAs that control gene expression post-transcriptionally either via the degradation of target mRNAs or the inhibition of protein translation. Each miRNA is believed to regulate the expression of multiple mRNA targets, and many miRNAs have been linked to the initiation and progression of human cancer. miRNAs control various activities of the immune system and different stages of hematopoietic development, and their misexpression is the cause of various blood malignancies. Certain miRNAs have oncogenic activities, whereas others have the potential to act as tumor suppressors. Because they control fundamental processes such as differentiation, cell growth and cell death, the study of the role of miRNAs in human neoplasms holds great promise for novel forms of therapy. Here, we summarize the role of miRNAs and their targets in contributing to human cancers and their function as regulators of apoptotic pathways and the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  • Abbott AL, Alvarez-Saavedra E, Miska EA, Lau NC, Bartel DP, Horvitz HR et al. (2005). The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev Cell 9: 403–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abe N, Watanabe T, Suzuki Y, Matsumoto N, Masaki T, Mori T et al. (2003). An increased high-mobility group A2 expression level is associated with malignant phenotype in pancreatic exocrine tissue. Br J Cancer 89: 2104–2109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adachi M, Suematsu S, Suda T, Watanabe D, Fukuyama H, Ogasawara J et al. (1996). Enhanced and accelerated lymphoproliferation in Fas-null mice. Proc Natl Acad Sci USA 93: 2131–2136.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T . (2007). Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci 98: 1914–1920.

    CAS  PubMed  Google Scholar 

  • Akao Y, Nakagawa Y, Naoe T . (2006). let-7 MicroRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29: 903–906.

    CAS  PubMed  Google Scholar 

  • Algeciras-Schimnich A, Barnhart BC, Peter ME . (2002). Apoptosis-independent functions of killer caspases. Curr Opin Cell Biol 14: 721–726.

    CAS  PubMed  Google Scholar 

  • Algeciras-Schimnich A, Pietras EM, Barnhart BC, Legembre P, Vijayan S, Holbeck SL et al. (2003). Two CD95 tumor classes with different sensitivities to antitumor drugs. Proc Natl Acad Sci USA 100: 11445–11450.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27: 2128–2136.

    CAS  PubMed  Google Scholar 

  • Baehrecke EH . (2003). miRNAs: micro managers of programmed cell death. Curr Biol 13: R473–R475.

    CAS  PubMed  Google Scholar 

  • Barnhart BC, Alappat EC, Peter ME . (2003). The CD95 type I/type II model. Semin Immunol 15: 185–193.

    CAS  PubMed  Google Scholar 

  • Barry M, Heibein JA, Pinkoski MJ, Lee SF, Moyer RW, Green DR et al. (2000). Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol Cell Biol 20: 3781–3794.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, Li MZ et al. (2003). Dicer is essential for mouse development. Nat Genet 35: 215–217.

    CAS  PubMed  Google Scholar 

  • Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. (2007). p53-Mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17: 1298–1307.

    CAS  PubMed  Google Scholar 

  • Bouillet P, Metcalf D, Huang DC, Tarlinton DM, Kay TW, Kontgen F et al. (1999). Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286: 1735–1738.

    CAS  PubMed  Google Scholar 

  • Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H et al. (2002). BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415: 922–926.

    CAS  PubMed  Google Scholar 

  • Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J, Andersen JA et al. (2008). Identification of Let-7-regulated oncofetal genes. Cancer Res 68: 2587–2591.

    CAS  PubMed  Google Scholar 

  • Brabletz T, Jung A, Hlubek F, Lohberg C, Meiler J, Suchy U et al. (1999). Negative regulation of CD4 expression in T cells by the transcriptional repressor ZEB. Int Immunol 11: 1701–1708.

    CAS  PubMed  Google Scholar 

  • Bredenkamp N, Seoighe C, Illing N . (2007). Comparative evolutionary analysis of the FoxG1 transcription factor from diverse vertebrates identifies conserved recognition sites for microRNA regulation. Dev Genes Evol 217: 227–233.

    CAS  PubMed  Google Scholar 

  • Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM . (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113: 25–36.

    CAS  PubMed  Google Scholar 

  • Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M et al. (2007). The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67: 1419–1423.

    CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99: 15524–15529.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. (2005). A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353: 1793–1801.

    CAS  PubMed  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nat Med 13: 613–618.

    CAS  PubMed  Google Scholar 

  • Castro JE, Listman JA, Jacobson BA, Wang Y, Lopez PA, Ju S et al. (1996). Fas modulation of apoptosis during negative selection of thymocytes. Immunity 5: 617–627.

    CAS  PubMed  Google Scholar 

  • Chalfie M, Horvitz HR, Sulston JE . (1981). Mutations that lead to reiterations in the cell lineages of C.elegans. Cell 24: 59–69.

    CAS  PubMed  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS . (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65: 6029–6033.

    CAS  PubMed  Google Scholar 

  • Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA et al. (2004). miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1: 106–113.

    CAS  PubMed  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. (2007). Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26: 745–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40: 43–50.

    CAS  PubMed  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP . (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science 303: 83–86.

    CAS  PubMed  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38: 228–233.

    CAS  PubMed  Google Scholar 

  • Chen Y, Gorski DH . (2008). Regulation of angiogenesis through a microRNA (miR-130a) that downregulates antiangiogenic homeobox genes GAX and HOXA5. Blood 111: 1217–1226.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng AM, Byrom MW, Shelton J, Ford LP . (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33: 1290–1297.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiappetta G, Bandiera A, Berlingieri MT, Visconti R, Manfioletti G, Battista S et al. (1995). The expression of the high mobility group HMGI (Y) proteins correlates with the malignant phenotype of human thyroid neoplasias. Oncogene 10: 1307–1314.

    CAS  PubMed  Google Scholar 

  • Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334: 1351–1358.

    CAS  PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY . (2007). MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67: 8433–8438.

    CAS  PubMed  Google Scholar 

  • Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K . (2007). MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67: 8994–9000.

    CAS  PubMed  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103: 7024–7029.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coultas L, Strasser A . (2003). The role of the Bcl-2 protein family in cancer. Semin Cancer Biol 13: 115–123.

    CAS  PubMed  Google Scholar 

  • Cretney E, Uldrich AP, Berzins SP, Strasser A, Godfrey DI, Smyth MJ . (2003). Normal thymocyte negative selection in TRAIL-deficient mice. J Exp Med 198: 491–496.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Q, Yu Z, Purisima EO, Wang E . (2006). Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2: 46.

    PubMed  PubMed Central  Google Scholar 

  • Cullen BR . (2004). Transcription and processing of human microRNA precursors. Mol Cell 16: 861–865.

    CAS  PubMed  Google Scholar 

  • Dews M, Homayouni A, Yu D, Murphy D, Sevignani C, Wentzel E et al. (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38: 1060–1065.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102: 3627–3632.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enders A, Bouillet P, Puthalakath H, Xu Y, Tarlinton DM, Strasser A . (2003). Loss of the pro-apoptotic BH3-only Bcl-2 family member Bim inhibits BCR stimulation-induced apoptosis and deletion of autoreactive B cells. J Exp Med 198: 1119–1126.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engels BM, Hutvagner G . (2006). Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25: 6163–6169.

    CAS  PubMed  Google Scholar 

  • Erickson SL, de Sauvage FJ, Kikly K, Carver-Moore K, Pitts-Meek S, Gillett N et al. (1994). Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. Nature 372: 560–563.

    CAS  PubMed  Google Scholar 

  • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. (2006). miR-122 Regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3: 87–98.

    CAS  PubMed  Google Scholar 

  • Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al. (2004). MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279: 52361–52365.

    CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L et al. (2008). The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7: 759–764.

    CAS  PubMed  Google Scholar 

  • Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104: 15805–15810.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C et al. (2005). A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 123: 819–831.

    CAS  PubMed  Google Scholar 

  • Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F et al. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102: 18081–18086.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fontana L, Pelosi E, Greco P, Racanicchi S, Testa U, Liuzzi F et al. (2007). MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 9: 775–787.

    CAS  PubMed  Google Scholar 

  • Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH . (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283: 1026–1033.

    CAS  PubMed  Google Scholar 

  • Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y et al. (2007). An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129: 617–631.

    CAS  PubMed  Google Scholar 

  • Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA et al. (2007). miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282: 23716–23724.

    CAS  PubMed  Google Scholar 

  • Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R et al. (2006). MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 103: 5078–5083.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gauwerky CE, Huebner K, Isobe M, Nowell PC, Croce CM . (1989). Activation of MYC in a masked t(8;17) translocation results in an aggressive B-cell leukemia. Proc Natl Acad Sci USA 86: 8867–8871.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Georgantas III RW, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S et al. (2007). CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 104: 2750–2755.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giannini G, Kim CJ, Di Marcotullio L, Manfioletti G, Cardinali B, Cerignoli F et al. (2000). Expression of the HMGI(Y) gene products in human neuroblastic tumours correlates with differentiation status. Br J Cancer 83: 1503–1509.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillies JK, Lorimer IA . (2007). Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6: 2005–2009.

    CAS  PubMed  Google Scholar 

  • Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J et al. (2007). Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 104: 16170–16175.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P et al. (2007). Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25: 387–392.

    CAS  PubMed  Google Scholar 

  • Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG et al. (2007). Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 67: 6092–6099.

    CAS  PubMed  Google Scholar 

  • Grandori C, Cowley SM, James LP, Eisenman RN . (2000). The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16: 653–699.

    CAS  PubMed  Google Scholar 

  • Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshild G et al. (2008). The microRNA-200 family and miR-205 regulate epithelial–mesenchymal transition by targeting the E-cadherin repressors, ZEB1 and SIP1. Nature Cell Biol 10: 593–601.

    CAS  PubMed  Google Scholar 

  • Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP . (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27: 91–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Chen Y, Ito H, Watanabe A, Ge X, Kodama T et al. (2006). Identification and characterization of lin-28 homolog B (LIN28B) in human hepatocellular carcinoma. Gene 384: 51–61.

    CAS  PubMed  Google Scholar 

  • Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ . (2008). MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105: 1516–1521.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65: 9628–9632.

    CAS  PubMed  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S et al. (2005a). The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102: 19075–19080.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447: 1130–1134.

    CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005b). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ . (2007). High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6: 5.

    PubMed  PubMed Central  Google Scholar 

  • Hornstein E, Mansfield JH, Yekta S, Hu JK, Harfe BD, McManus MT et al. (2005). The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438: 671–674.

    CAS  PubMed  Google Scholar 

  • Hossain A, Kuo MT, Saunders GF . (2006). Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 26: 8191–8201.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes PD, Belz GT, Fortner KA, Budd RC, Strasser A, Bouillet P . (2008). Apoptosis regulators Fas and Bim cooperate in shutdown of chronic immune responses and prevention of autoimmunity. Immunity 28: 197–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutcheson J, Scatizzi JC, Siddiqui AM, Haines III GK, Wu T, Li QZ et al. (2008). Combined deficiency of proapoptotic regulators Bim and Fas results in the early onset of systemic autoimmunity. Immunity 28: 206–217.

    CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    CAS  PubMed  Google Scholar 

  • Janz S . (2006). Myc translocations in B cell and plasma cell neoplasms. DNA Repair (Amst) 5: 1213–1224.

    CAS  Google Scholar 

  • Joglekar MV, Parekh VS, Mehta S, Bhonde RR, Hardikar AA . (2007). MicroRNA profiling of developing and regenerating pancreas reveal post-transcriptional regulation of neurogenin3. Dev Biol 311: 603–612.

    CAS  PubMed  Google Scholar 

  • Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al. (2007). The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67: 7713–7722.

    CAS  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    CAS  PubMed  Google Scholar 

  • Johnston RJ, Hobert O . (2003). A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426: 845–849.

    CAS  PubMed  Google Scholar 

  • Karin M, Lawrence T, Nizet V . (2006). Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124: 823–835.

    CAS  PubMed  Google Scholar 

  • Kawasaki H, Taira K . (2004). MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf) 48: 211–212.

    Google Scholar 

  • Kim VN . (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6: 376–385.

    CAS  PubMed  Google Scholar 

  • Kishimoto H, Surh CD, Sprent J . (1998). A role for Fas in negative selection of thymocytes in vivo. J Exp Med 187: 1427–1438.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kluiver J, Haralambieva E, de Jong D, Blokzijl T, Jacobs S, Kroesen BJ et al. (2006). Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45: 147–153.

    CAS  PubMed  Google Scholar 

  • Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S et al. (2005). BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207: 243–249.

    CAS  PubMed  Google Scholar 

  • Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA et al. (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 105: 3903–3908.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39: 673–677.

    CAS  PubMed  Google Scholar 

  • Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W et al. (2006). Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99: 671–678.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . (2001). Identification of novel genes coding for small expressed RNAs. Science 294: 853–858.

    CAS  PubMed  Google Scholar 

  • Lai EC . (2002). Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30: 363–364.

    CAS  PubMed  Google Scholar 

  • Lamhamedi-Cherradi SE, Zheng SJ, Maguschak KA, Peschon J, Chen YH . (2003). Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL−/− mice. Nat Immunol 4: 255–260.

    CAS  PubMed  Google Scholar 

  • Landais S, Landry S, Legault P, Rassart E . (2007). Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res 67: 5699–5707.

    CAS  PubMed  Google Scholar 

  • Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, Paterson JC et al. (2007). MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 121: 1156–1161.

    CAS  PubMed  Google Scholar 

  • le Sage C, Nagel R, Egan DA, Schrier M, Mesman E, Mangiola A et al. (2007). Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26: 3699–3708.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL et al. (2007). Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120: 1046–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Palkovits M, Young III WS . (2006a). miR-7b, a microRNA up-regulated in the hypothalamus after chronic hyperosmolar stimulation, inhibits Fos translation. Proc Natl Acad Sci USA 103: 15669–15674.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Feig C, Tchikov V, Schickel R, Hallas C, Schutze S et al. (2006b). The role of receptor internalization in CD95 signaling. EMBO J 25: 1009–1023.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V . (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75: 843–854.

    CAS  PubMed  Google Scholar 

  • Lee YS, Dutta A . (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21: 1025–1030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F et al. (2008). Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214: 17–24.

    CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    CAS  PubMed  Google Scholar 

  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . (2003). Prediction of mammalian microRNA targets. Cell 115: 787–798.

    CAS  PubMed  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J . (1998). Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501.

    CAS  PubMed  Google Scholar 

  • Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G et al. (2007). miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129: 147–161.

    CAS  PubMed  Google Scholar 

  • Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR et al. (2007). Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27: 2240–2252.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M et al. (2004). An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101: 9740–9744.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK et al. (2007). Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110: 1330–1333.

    PubMed  Google Scholar 

  • Lu J, Getz G, Miska EA, varez-Saavedra E, Lamb J, Peck D et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.

    CAS  PubMed  Google Scholar 

  • Lu L, Katsaros D, de la Longrais IA, Sochirca O, Yu H . (2007a). Hypermethylation of let-7a-3 in epithelial ovarian cancer is associated with low insulin-like growth factor-II expression and favorable prognosis. Cancer Res 67: 10117–10122.

    CAS  PubMed  Google Scholar 

  • Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL . (2007b). Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 310: 442–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lui WO, Pourmand N, Patterson BK, Fire A . (2007). Patterns of known and novel small RNAs in human cervical cancer. Cancer Res 67: 6031–6043.

    CAS  PubMed  Google Scholar 

  • Lukiw WJ, Pogue AI . (2007). Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 101: 1265–1269.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481–490.

    CAS  PubMed  Google Scholar 

  • Ma L, Teruya-Feldstein J, Weinberg RA . (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449: 682–688.

    CAS  PubMed  Google Scholar 

  • Marton S, Garcia MR, Robello C, Persson H, Trajtenberg F, Pritsch O et al. (2008). Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia 22: 330–338.

    CAS  PubMed  Google Scholar 

  • Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T . (2007). Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun 364: 509–514.

    CAS  PubMed  Google Scholar 

  • Matsubara H, Takeuchi T, Nishikawa E, Yanagisawa K, Hayashita Y, Ebi H et al. (2007). Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene 26: 6099–6105.

    CAS  PubMed  Google Scholar 

  • Mayr C, Hemann MT, Bartel DP . (2007). Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315: 1576–1579.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T . (2007a). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133: 647–658.

    CAS  PubMed  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y, Patel T . (2007b). The microRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem 282: 8256–8264.

    CAS  PubMed  Google Scholar 

  • Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A . (2004). High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39: 167–169.

    CAS  PubMed  Google Scholar 

  • Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ . (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1: 882–891.

    CAS  PubMed  Google Scholar 

  • Miyazawa J, Mitoro A, Kawashiri S, Chada KK, Imai K . (2004). Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res 64: 2024–2029.

    CAS  PubMed  Google Scholar 

  • Mott JL, Kobayashi S, Bronk SF, Gores GJ . (2007). mir-29 Regulates Mcl-1 protein expression and apoptosis. Oncogene 26: 6133–6140.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M et al. (2006). The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8: 278–284.

    CAS  PubMed  Google Scholar 

  • Newman MA, Thomson JM, Hammond S . (2008). Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA; 19 January 2008, e-pub ahead of print.

  • Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J, Burge CB . (2007). Determinants of targeting by endogenous and exogenous microRNA and siRNAs. RNA 13: 1894–1910.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D . (2007). MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104: 1604–1609.

    PubMed  PubMed Central  Google Scholar 

  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.

    PubMed  Google Scholar 

  • O’Rourke JR, Georges SA, Seay HR, Tapscott SJ, McManus MT, Goldhamer DJ et al. (2007). Essential role for Dicer during skeletal muscle development. Dev Biol 311: 359–368.

    PubMed  PubMed Central  Google Scholar 

  • Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al. (2004). Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res 64: 3087–3095.

    CAS  PubMed  Google Scholar 

  • Page DM, Roberts EM, Peschon JJ, Hedrick SM . (1998). TNF receptor-deficient mice reveal striking differences between several models of thymocyte negative selection. J Immunol 160: 120–133.

    CAS  PubMed  Google Scholar 

  • Park SM, Gaur AB, Lengyel E, Peter ME . (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors, ZEB1 and ZEB2. Genes Dev 22: 894–907.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park SM, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B et al. (2007). Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle 6: 2585–2590.

    CAS  PubMed  Google Scholar 

  • Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408: 86–89.

    CAS  PubMed  Google Scholar 

  • Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V et al. (2006). Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66: 11590–11593.

    CAS  PubMed  Google Scholar 

  • Peter ME, Krammer PH . (2003). The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10: 26–35.

    CAS  PubMed  Google Scholar 

  • Pfeffer K, Matsuyama T, Kundig TM, Wakeham A, Kishihara K, Shahinian A et al. (1993). Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell 73: 457–467.

    CAS  PubMed  Google Scholar 

  • Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R . (2006). MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 281: 26932–26942.

    CAS  PubMed  Google Scholar 

  • Postigo AA, Dean DC . (1999). Independent repressor domains in ZEB regulate muscle and T-cell differentiation. Mol Cell Biol 19: 7961–7971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramkissoon SH, Mainwaring LA, Ogasawara Y, Keyvanfar K, McCoy Jr JP, Sloand EM et al. (2006). Hematopoietic-specific microRNA expression in human cells. Leuk Res 30: 643–647.

    CAS  PubMed  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N et al. (2007). Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26: 731–743.

    CAS  PubMed  Google Scholar 

  • Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901–906.

    CAS  PubMed  Google Scholar 

  • Ricci MS, Kim SH, Ogi K, Plastaras JP, Ling J, Wang W et al. (2007). Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 12: 66–80.

    CAS  PubMed  Google Scholar 

  • Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR et al. (2007). Requirement of bic/microRNA-155 for normal immune function. Science 316: 608–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S et al. (2006). MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24: 4677–4684.

    CAS  PubMed  Google Scholar 

  • Ross DT, Scherf U, Eisen MB, Perou CM, Rees C, Spellman P et al. (2000). Systematic variation in gene expression patterns in human cancer cell lines. Nat Genet 24: 227–235.

    CAS  PubMed  Google Scholar 

  • Salvesen GS, Duckett CS . (2002). IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 3: 401–410.

    CAS  PubMed  Google Scholar 

  • Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. (2007). MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67: 9762–9770.

    CAS  PubMed  Google Scholar 

  • Sarhadi VK, Wikman H, Salmenkivi K, Kuosma E, Sioris T, Salo J et al. (2006). Increased expression of high mobility group A proteins in lung cancer. J Pathol 209: 206–212.

    CAS  PubMed  Google Scholar 

  • Sathyan P, Golden HB, Miranda RC . (2007). Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci 27: 8546–8557.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17: 1675–1687.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scaffidi C, Schmitz I, Krammer PH, Peter ME . (1999). The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 274: 1541–1548.

    CAS  PubMed  Google Scholar 

  • Schmitz I, Krueger A, Baumann S, Schulze-Bergkamen H, Krammer PH, Kirchhoff S . (2003). An IL-2-dependent switch between CD95 signaling pathways sensitizes primary human T cells toward CD95-mediated activation-induced cell death. J Immunol 171: 2930–2936.

    CAS  PubMed  Google Scholar 

  • Schulman BR, Esquela-Kerscher A, Slack FJ . (2005). Reciprocal expression of lin-41 and the microRNAs let-7 and mir-125 during mouse embryogenesis. Dev Dyn 234: 1046–1054.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME . (1998). Apoptosis signaling by death receptors. Eur J Biochem 254: 439–459.

    CAS  PubMed  Google Scholar 

  • Sedger LM, Glaccum MB, Schuh JC, Kanaly ST, Williamson E, Kayagaki N et al. (2002). Characterization of the in vivo function of TNF-alpha-related apoptosis-inducing ligand, TRAIL/Apo2L, using TRAIL/Apo2L gene-deficient mice. Eur J Immunol 32: 2246–2254.

    CAS  PubMed  Google Scholar 

  • Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS et al. (2007). Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Hum Genet 81: 405–413.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sevinsky JR, Whalen AM, Ahn NG . (2004). Extracellular signal-regulated kinase induces the megakaryocyte GPIIb/CD41 gene through MafB/Kreisler. Mol Cell Biol 24: 4534–4545.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shell S, Park SM, Radjabi AR, Schickel R, Kistner EO, Jewell DA et al. (2007). Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA 104: 11400–11405.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY . (2007). miR-21-Mediated tumor growth. Oncogene 26: 2799–2803.

    CAS  PubMed  Google Scholar 

  • Singer GG, Abbas AK . (1994). The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity 1: 365–371.

    CAS  PubMed  Google Scholar 

  • Strasser A, Puthalakath H, O’Reilly LA, Bouillet P . (2008). What do we know about the mechanisms of elimination of autoreactive T and B cells and what challenges remain. Immunol Cell Biol 86: 57–66.

    CAS  PubMed  Google Scholar 

  • Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F et al. (2007). An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282: 2135–2143.

    CAS  PubMed  Google Scholar 

  • Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A et al. (2007). MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26: 4442–4452.

    CAS  PubMed  Google Scholar 

  • Taganov KD, Boldin MP, Chang KJ, Baltimore D . (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103: 12481–12486.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H et al. (2004). Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3753–3756.

    CAS  PubMed  Google Scholar 

  • Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A et al. (2007). Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6: 1586–1593.

    CAS  PubMed  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451: 147–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tazawa H, Tsuchiya N, Izumiya M, Nakagama H . (2007). Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104: 15472–15477.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y et al. (2007). Regulation of the germinal center response by microRNA-155. Science 316: 604–608.

    CAS  PubMed  Google Scholar 

  • Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B et al. (2007). Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179: 5082–5089.

    CAS  PubMed  Google Scholar 

  • van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103: 18255–18260.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU et al. (2007). Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 109: 4399–4405.

    CAS  PubMed  Google Scholar 

  • Versteeg R, Caron H, Cheng NC, van der Drift P, Slater R, Westerveld A et al. (1995). 1p36: every subband a suppressor? Eur J Cancer 31A: 538–541.

    CAS  PubMed  Google Scholar 

  • Viswanathan SR, Daley GQ, Gregory RI . (2008). Selective blockade of microRNA processing by Lin-28. Science 320: 97–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103: 2257–2261.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al. (2006). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124: 1169–1181.

    CAS  PubMed  Google Scholar 

  • Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al. (2007). A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Adv Exp Med Biol 604: 17–46.

    PubMed  Google Scholar 

  • Waterhouse NJ, Sedelies KA, Browne KA, Wowk ME, Newbold A, Sutton VR et al. (2005). A central role for Bid in granzyme B-induced apoptosis. J Biol Chem 280: 4476–4482.

    CAS  PubMed  Google Scholar 

  • Weant AE, Michalek RD, Khan IU, Holbrook BC, Willingham MC, Grayson JM . (2008). Apoptosis regulators Bim and Fas function concurrently to control autoimmunity and CD8+ T cell contraction. Immunity 28: 218–230.

    CAS  PubMed  Google Scholar 

  • Welch C, Chen Y, Stallings RL . (2007). MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26: 5017–5022.

    CAS  PubMed  Google Scholar 

  • Wightman B, Ha I, Ruvkun G . (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855–862.

    CAS  PubMed  Google Scholar 

  • Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J et al. (2007). MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131: 146–159.

    CAS  PubMed  Google Scholar 

  • Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H et al. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120: 3045–3052.

    CAS  PubMed  Google Scholar 

  • Xu P, Vernooy SY, Guo M, Hay BA . (2003). The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13: 790–795.

    CAS  PubMed  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9: 189–198.

    CAS  PubMed  Google Scholar 

  • Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B et al. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med 13: 486–491.

    CAS  PubMed  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.

    CAS  PubMed  Google Scholar 

  • Yasui DH, Genetta T, Kadesch T, Williams TM, Swain SL, Tsui LV et al. (1998). Transcriptional repression of the IL-2 gene in Th cells by ZEB. J Immunol 160: 4433–4440.

    CAS  PubMed  Google Scholar 

  • Yekta S, Shih IH, Bartel DP . (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304: 594–596.

    CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920.

    CAS  PubMed  Google Scholar 

  • Zanette DL, Rivadavia F, Molfetta GA, Barbuzano FG, Proto-Siqueira R, Silva-Jr WA . (2007). miRNA Expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 40: 1435–1440.

    CAS  PubMed  Google Scholar 

  • Zeng Y . (2006). Principles of micro-RNA production and maturation. Oncogene 25: 6156–6162.

    CAS  PubMed  Google Scholar 

  • Zeng Y, Cullen BR . (2006). Recognition and cleavage of primary microRNA transcripts. Methods Mol Biol 342: 49–56.

    CAS  PubMed  Google Scholar 

  • Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A et al. (2006). microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103: 9136–9141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF . (2007). miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 104: 7080–7085.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu S, Si ML, Wu H, Mo YY . (2007). MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282: 14328–14336.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M E Peter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schickel, R., Boyerinas, B., Park, SM. et al. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27, 5959–5974 (2008). https://doi.org/10.1038/onc.2008.274

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.274

Keywords

This article is cited by

Search

Quick links