Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Plk1 depletion in nontransformed diploid cells activates the DNA-damage checkpoint

Abstract

We previously reported that polo-like kinase 1 (Plk1) depletion by lentivirus-based RNA interference led to mitotic arrest and apoptosis in cancer cells, whereas normal diploid cell lines, hTERT-RPE1 and MCF10A, survived a similar level of depletion. To study homogeneous cell lines, we generated several Plk1-depleted hTERT-RPE1 and MCF10A clones that were derived from single cells depleted of Plk1. We found that in the long term, Plk1 depletion slowed proliferation of hTERT-RPE1 cells, apparently due to attenuated progression through S phase. These cells had altered morphology and were elongated compared with control. In contrast, MCF10A clones with mild levels of depletion showed no obvious phenotype. They appeared to have normal proliferation rates with no cell-cycle arrest. However, one MCF10A clone, which was severely depleted of Plk1, although viable, showed sporadic G2/M arrest and apoptosis. This MCF10A clone and all the hTERT-RPE1 clones displayed evidence of DNA-damage checkpoint activation. These data further support the interpretation that cancer cell lines have a much greater requirement for Plk1 than normal nontransformed diploid cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Ando K, Ozaki T, Yamamoto H, Furuya K, Hosoda M, Hayashi S et al. (2004). Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. J Biol Chem 279: 25549–25561.

    Article  CAS  Google Scholar 

  • Angelis KJ, Dusinska M, Collins AR . (1999). Single cell gel electrophoresis: detection of DNA damage at different levels of sensitivity. Electrophoresis 20: 2133–2138.

    Article  CAS  Google Scholar 

  • Barr FA, Sillje HH, Nigg EA . (2004). Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5: 429–440.

    Article  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–352.

    Article  CAS  Google Scholar 

  • Castedo M, Perfettini J-L, Roumier T, Yakushijin K, Horne D, Medema R et al. (2004). The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 23: 4353–4361.

    Article  CAS  Google Scholar 

  • Eckerdt F, Yuan J, Strebhardt K . (2005). Polo-like kinases and oncogenesis. Oncogene 24: 267–276.

    Article  CAS  Google Scholar 

  • Galy A, Neron B, Planque N, Saule S, Eychene A . (2002). Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina. Dev Biol 248: 251–264.

    Article  CAS  Google Scholar 

  • Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H . (1984). Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133: 1710–1715.

    CAS  PubMed  Google Scholar 

  • Gumireddy K, Reddy MV, Cosenza SC, Boominathan R, Baker SJ, Papathi N et al. (2005). ON01910, a non-ATP-competitive small molecule inhibitor of Plk1, is a potent anticancer agent. Cancer Cell 7: 275–286.

    Article  CAS  Google Scholar 

  • Hardy CF, Pautz A . (1996). A novel role for Cdc5p in DNA replication. Mol Cell Biol 16: 6775–6782.

    Article  CAS  Google Scholar 

  • Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M et al. (1999). Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet 21: 111–114.

    Article  CAS  Google Scholar 

  • Knecht R, Elez R, Oechler M, Solbach C, von Ilberg C, Strebhardt K . (1999). Prognostic significance of polo-like kinase (PLK) expression in squamous cell carcinomas of the head and neck. Cancer Res 59: 2794–2797.

    CAS  PubMed  Google Scholar 

  • Knecht R, Oberhauser C, Strebhardt K . (2000). PLK (polo-like kinase), a new prognostic marker for oropharyngeal carcinomas. Int J Cancer 89: 535–536.

    Article  CAS  Google Scholar 

  • Liu X, Erikson RL . (2003). Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci USA 100: 5789–5794.

    Article  CAS  Google Scholar 

  • Liu X, Lei M, Erikson RL . (2006). Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol Cell Biol 26: 2093–2108.

    Article  Google Scholar 

  • Mamely I, van Vugt MA, Smits VA, Semple JI, Lemmens B, Perrakis A et al. (2006). Polo-like kinase-1 controls proteasome-dependent degradation of Claspin during checkpoint recovery. Curr Biol 16: 1950–1955.

    Article  CAS  Google Scholar 

  • Rak DJ, Hardy KM, Jaffe GJ, McKay BS . (2006). Ca++- switch induction of RPE differentiation. Exp Eye Res 82: 648–656.

    Article  CAS  Google Scholar 

  • Smits VA, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH . (2000). Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol 2: 672–676.

    Article  CAS  Google Scholar 

  • Soule HD, Maloney TM, Wolman SR, Peterson Jr WD, Brenz R, McGrath CM et al. (1990). Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50: 6075–6086.

    CAS  PubMed  Google Scholar 

  • Spankuch B, Matthess Y, Knecht R, Zimmer B, Kaufmann M, Strebhardt K . (2004). Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1. J Natl Cancer Inst 96: 862–872.

    Article  Google Scholar 

  • Steegmaier M, Hoffmann M, Baum A, Lenart P, Petronczki M, Krssak M et al. (2007). BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 17: 316–322.

    Article  CAS  Google Scholar 

  • Strebhardt K, Kneisel L, Linhart C, Bernd A, Kaufmann R . (2000). Prognostic value of pololike kinase expression in melanomas. JAMA 283: 479–480.

    Article  CAS  Google Scholar 

  • Strebhardt K, Ullrich A . (2006). Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 6: 321–330.

    Article  CAS  Google Scholar 

  • Takai N, Hamanaka R, Yoshimatsu J, Miyakawa I . (2005). Polo-like kinases (Plks) and cancer. Oncogene 24: 287–291.

    Article  CAS  Google Scholar 

  • Tsvetkov L, Stern DF . (2005). Interaction of chromatin-associated Plk1 and Mcm7. J Biol Chem 280: 11943–11947.

    Article  CAS  Google Scholar 

  • Tsvetkov L, Xu X, Li J, Stern DF . (2003). Polo-like kinase 1 and Chk2 interact and co-localize to centrosomes and the midbody. J Biol Chem 278: 8468–8475.

    Article  CAS  Google Scholar 

  • Weinstein IB, Joe AK . (2006). Mechanisms of disease: Oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3: 448–457.

    Article  CAS  Google Scholar 

  • Winkles JA, Alberts GF . (2005). Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 24: 260–266.

    Article  CAS  Google Scholar 

  • Wolf G, Elez R, Doermer A, Holtrich U, Ackermann H, Stutte HJ et al. (1997). Prognostic significance of polo-like kinase (PLK) expression in non-small cell lung cancer. Oncogene 14: 543–549.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Eleanor Erikson for critically reading the paper. This work was supported by National Institutes of Health Grant GM59172. RL Erikson is a John F Drum American Cancer Society Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Lei.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, M., Erikson, R. Plk1 depletion in nontransformed diploid cells activates the DNA-damage checkpoint. Oncogene 27, 3935–3943 (2008). https://doi.org/10.1038/onc.2008.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.36

Keywords

This article is cited by

Search

Quick links