Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors

Abstract

The cochaperone CDC37 promotes the association of HSP90 with the protein kinase subset of client proteins to maintain their stability and signalling functions. HSP90 inhibitors induce depletion of clients, which include several oncogenic kinases. We hypothesized that the targeting of CDC37 using siRNAs would compromise the maturation of these clients and increase the sensitivity of cancer cells to HSP90 inhibitors. Here, we show that silencing of CDC37 in human colon cancer cells diminished the association of kinase clients with HSP90 and reduced levels of the clients ERBB2, CRAF, CDK4 and CDK6, as well as phosphorylated AKT. CDC37 silencing promoted the proteasome-mediated degradation of kinase clients, suggesting a degradation pathway independent from HSP90 binding. Decreased cell signalling through kinase clients was also demonstrated by reduced phosphorylation of downstream substrates and colon cancer cell proliferation was subsequently reduced by the inhibition of the G1/S-phase transition. Furthermore, combining CDC37 silencing with the HSP90 inhibitor 17-AAG induced more extensive and sustained depletion of kinase clients and potentiated cell cycle arrest and apoptosis. These results support an essential role for CDC37 in concert with HSP90 in maintaining oncogenic protein kinase clients and endorse the therapeutic potential of targeting CDC37 in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Banerji U, Affolter A, Judson I, Marais R, Workman P . (2008). BRAF and NRAS mutations in melanoma: potential relationships to clinical response to HSP90 inhibitors. Mol Cancer Ther 7: 737–739.

    Article  CAS  PubMed  Google Scholar 

  • Banerji U, O'Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y et al. (2005). Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23: 4152–4161.

    Article  CAS  PubMed  Google Scholar 

  • Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N . (2002). Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277: 39858–39866.

    Article  CAS  PubMed  Google Scholar 

  • Caplan AJ, Mandal AK, Theodoraki MA . (2007). Molecular chaperones and protein kinase quality control. Trends Cell Biol 17: 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Smith DF . (1998). Hop as an adaptor in the heat shock protein 70 (Hsp70) and hsp90 chaperone machinery. J Biol Chem 273: 35194–35200.

    Article  CAS  PubMed  Google Scholar 

  • Clarke PA, Hostein I, Banerji U, Stefano FD, Maloney A, Walton M et al. (2000). Gene expression profiling of human colon cancer cells following inhibition of signal transduction by 17-allylamino-17-demethoxygeldanamycin, an inhibitor of the hsp90 molecular chaperone. Oncogene 19: 4125–4133.

    Article  CAS  PubMed  Google Scholar 

  • Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J et al. (2001). The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3: 93–96.

    Article  CAS  PubMed  Google Scholar 

  • da Rocha DS, Friedlos F, Light Y, Springer C, Workman P, Marais R . (2005). Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res 65: 10686–10691.

    Article  Google Scholar 

  • Fang Y, Fliss AE, Rao J, Caplan AJ . (1998). SBA1 encodes a yeast hsp90 cochaperone that is homologous to vertebrate p23 proteins. Mol Cell Biol 18: 3727–3734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghatak S, Misra S, Toole BP . (2005). Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. J Biol Chem 280: 8875–8883.

    Article  CAS  PubMed  Google Scholar 

  • Grammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN, Cochran BH . (1999). p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 19: 1661–1672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray Jr PJ, Prince T, Cheng J, Stevenson MA, Calderwood SK . (2008). Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer 8: 491–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray Jr PJ, Stevenson MA, Calderwood SK . (2007). Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Cancer Res 67: 11942–11950.

    Article  CAS  PubMed  Google Scholar 

  • Grbovic OM, Basso AD, Sawai A, Ye Q, Friedlander P, Solit D et al. (2006). V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc Natl Acad Sci USA 103: 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Guo F, Rocha K, Bali P, Pranpat M, Fiskus W, Boyapalle S et al. (2005). Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 65: 10536–10544.

    Article  CAS  PubMed  Google Scholar 

  • Hartson SD, Irwin AD, Shao J, Scroggins BT, Volk L, Huang W et al. (2000). p50(cdc37) is a nonexclusive Hsp90 cohort which participates intimately in Hsp90-mediated folding of immature kinase molecules. Biochemistry 39: 7631–7644.

    Article  CAS  PubMed  Google Scholar 

  • Hieronymus H, Lamb J, Ross KN, Peng XP, Clement C, Rodina A et al. (2006). Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 10: 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Holford J, Sharp SY, Murrer BA, Abrams M, Kelland LR . (1998). In vitro circumvention of cisplatin resistance by the novel sterically hindered platinum complex AMD473. Br J Cancer 77: 366–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes JL, Sharp SY, Hobbs S, Workman P . (2008). Silencing of HSP90 cochaperone AHA1 expression decreases client protein activation and increases cellular sensitivity to the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res 68: 1188–1197.

    Article  PubMed  Google Scholar 

  • Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA . (2001). Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61: 4003–4009.

    CAS  PubMed  Google Scholar 

  • Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC et al. (2003). A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425: 407–410.

    Article  CAS  PubMed  Google Scholar 

  • Lamphere L, Fiore F, Xu X, Brizuela L, Keezer S, Sardet C et al. (1997). Interaction between Cdc37 and Cdk4 in human cells. Oncogene 14: 1999–2004.

    Article  CAS  PubMed  Google Scholar 

  • Lavictoire SJ, Parolin DA, Klimowicz AC, Kelly JF, Lorimer IA . (2003). Interaction of Hsp90 with the nascent form of the mutant epidermal growth factor receptor EGFRvIII. J Biol Chem 278: 5292–5299.

    Article  CAS  PubMed  Google Scholar 

  • Lee P, Rao J, Fliss A, Yang E, Garrett S, Caplan AJ . (2002). The Cdc37 protein kinase-binding domain is sufficient for protein kinase activity and cell viability. J Cell Biol 159: 1051–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLean M, Picard D . (2003). Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 8: 114–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maloney A, Workman P . (2002). HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2: 3–24.

    Article  CAS  PubMed  Google Scholar 

  • Mandal AK, Lee P, Chen JA, Nillegoda N, Heller A, DiStasio S et al. (2007). Cdc37 has distinct roles in protein kinase quality control that protect nascent chains from degradation and promote posttranslational maturation. J Cell Biol 176: 319–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S . (2002). The protein kinase complement of the human genome. Science 298: 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  • McDonald E, Workman P, Jones K . (2006). Inhibitors of the HSP90 molecular chaperone: attacking the master regulator in cancer. Curr Top Med Chem 6: 1091–1107.

    Article  CAS  PubMed  Google Scholar 

  • Modi S, Stopeck AT, Gordon MS, Mendelson D, Solit DB, Bagatell R et al. (2007). Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol 25: 5410–5417.

    Article  CAS  PubMed  Google Scholar 

  • Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU . (1998). In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143: 901–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacey S, Banerji U, Judson I, Workman P . (2006). Hsp90 inhibitors in the clinic. Handb Exp Pharmacol 172: 331–358.

    Article  CAS  Google Scholar 

  • Panaretou B, Siligardi G, Meyer P, Maloney A, Sullivan JK, Singh S et al. (2002). Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone aha1. Mol Cell 10: 1307–1318.

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH . (2005). Hsp90 and Cdc37—a chaperone cancer conspiracy. Curr Opin Genet Dev 15: 55–61.

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C . (2006). Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75: 271–294.

    Article  CAS  PubMed  Google Scholar 

  • Pearl LH, Prodromou C, Workman P . (2008). The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410: 439–453.

    Article  CAS  PubMed  Google Scholar 

  • Powers MV, Clarke PA, Workman P . (2008). Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14: 250–262.

    Article  CAS  PubMed  Google Scholar 

  • Raynaud FI, Eccles S, Clarke PA, Hayes A, Nutley B, Alix S et al. (2007). Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res 67: 5840–5850.

    Article  CAS  PubMed  Google Scholar 

  • Roe SM, Ali MM, Meyer P, Vaughan CK, Panaretou B, Piper PW et al. (2004). The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell 116: 87–98.

    Article  CAS  PubMed  Google Scholar 

  • Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH . (1999). Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42: 260–266.

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Fujita N, Tsuruo T . (2000). Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 97: 10832–10837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarze SR, Fu VX, Jarrard DF . (2003). Cdc37 enhances proliferation and is necessary for normal human prostate epithelial cell survival. Cancer Res 63: 4614–4619.

    CAS  PubMed  Google Scholar 

  • Sharp SY, Prodromou C, Boxall K, Powers MV, Holmes JL, Box G et al. (2007). Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Mol Cancer Ther 6: 1198–1211.

    Article  CAS  PubMed  Google Scholar 

  • Siligardi G, Hu B, Panaretou B, Piper PW, Pearl LH, Prodromou C . (2004). Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J Biol Chem 279: 51989–51998.

    Article  CAS  PubMed  Google Scholar 

  • Siligardi G, Panaretou B, Meyer P, Singh S, Woolfson DN, Piper PW et al. (2002). Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 277: 20151–20159.

    Article  CAS  PubMed  Google Scholar 

  • Smith JR, Workman P . (2007). Targeting the cancer chaperone HSP90. Drug Discov Today: Ther Strategies 4: 219–227.

    Google Scholar 

  • Stepanova L, Finegold M, DeMayo F, Schmidt EV, Harper JW . (2000a). The oncoprotein kinase chaperone CDC37 functions as an oncogene in mice and collaborates with both c-myc and cyclin D1 in transformation of multiple tissues. Mol Cell Biol 20: 4462–4473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova L, Leng X, Harper JW . (1997). Analysis of mammalian Cdc37, a protein kinase targeting subunit of heat shock protein 90. Methods Enzymol 283: 220–229.

    Article  CAS  PubMed  Google Scholar 

  • Stepanova L, Leng X, Parker SB, Harper JW . (1996). Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10: 1491–1502.

    Article  CAS  PubMed  Google Scholar 

  • Stepanova L, Yang G, DeMayo F, Wheeler TM, Finegold M, Thompson TC et al. (2000b). Induction of human Cdc37 in prostate cancer correlates with the ability of targeted Cdc37 expression to promote prostatic hyperplasia. Oncogene 19: 2186–2193.

    Article  CAS  PubMed  Google Scholar 

  • Turnbull EL, Martin IV, Fantes PA . (2005). Cdc37 maintains cellular viability in Schizosaccharomyces pombe independently of interactions with heat-shock protein 90. FEBS J 272: 4129–4140.

    Article  CAS  PubMed  Google Scholar 

  • Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MM, Prodromou C et al. (2006). Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 23: 697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Goode T, Iakova P, Albrecht JH, Timchenko NA . (2002). C/EBP alpha triggers proteasome-dependent degradation of cdk4 during growth arrest. EMBO J 21: 930–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerheide SD, Bosman JD, Mbadugha BN, Kawahara TL, Matsumoto G, Kim S et al. (2004). Celastrols as inducers of the heat shock response and cytoprotection. J Biol Chem 279: 56053–56060.

    Article  CAS  PubMed  Google Scholar 

  • Workman P . (2004). Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206: 149–157.

    Article  CAS  PubMed  Google Scholar 

  • Workman P, Burrows F, Neckers L, Rosen N . (2007). Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann NY Acad Sci 1113: 202–216.

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L . (2002). Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci USA 99: 12847–12852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Yuan X, Jung YJ, Yang Y, Basso A, Rosen N et al. (2003). The heat shock protein 90 inhibitor geldanamycin and the ErbB inhibitor ZD1839 promote rapid PP1 phosphatase-dependent inactivation of AKT in ErbB2 overexpressing breast cancer cells. Cancer Res 63: 7777–7784.

    CAS  PubMed  Google Scholar 

  • Yang H, Chen D, Cui QC, Yuan X, Dou QP . (2006). Celastrol, a triterpene extracted from the Chinese ‘Thunder of God Vine,’ is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 66: 4758–4765.

    Article  CAS  PubMed  Google Scholar 

  • Yun BG, Matts RL . (2005). Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp Cell Res 307: 212–223.

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Hamza A, Cao X, Wang B, Yu S, Zhan CG et al. (2008). A novel Hsp90 inhibitor to disrupt Hsp90/Cdc37 complex against pancreatic cancer cells. Mol Cancer Ther 7: 162–170.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Hirshberg M, McLaughlin SH, Lazar GA, Grossmann JG, Nielsen PR et al. (2004). Biochemical and structural studies of the interaction of Cdc37 with Hsp90. J Mol Biol 340: 891–907.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our colleagues in the Signal Transduction and Molecular Pharmacology Team and Chaperone Project Team for helpful discussions. Our work is supported by Cancer Research UK [CUK] Programme Grant number C309/A8274. JRS is the recipient of a studentship from The Institute of Cancer Research. PW is a Cancer Research UK Life Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Workman.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J., Clarke, P., de Billy, E. et al. Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene 28, 157–169 (2009). https://doi.org/10.1038/onc.2008.380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.380

Keywords

This article is cited by

Search

Quick links