Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Crystal structure of a p53 core tetramer bound to DNA

Abstract

The tumor suppressor p53 regulates downstream genes in response to many cellular stresses and is frequently mutated in human cancers. Here, we report the use of a crosslinking strategy to trap a tetrameric p53 DNA-binding domain (p53DBD) bound to DNA and the X-ray crystal structure of the protein/DNA complex. The structure reveals that two p53DBD dimers bind to B form DNA with no relative twist and that a p53 tetramer can bind to DNA without introducing significant DNA bending. The numerous dimer–dimer interactions involve several strictly conserved residues, thus suggesting a molecular basis for p53DBD-DNA binding cooperativity. Surface residue conservation of the p53DBD tetramer bound to DNA highlights possible regions of other p53 domain or p53 cofactor interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Balagurumoorthy P, Sakamoto H, Lewis MS, Zambrano N, Clore GM, Gronenborn AM et al. (1995). Four p53 DNA-binding domain peptides bind natural p53-response elements and bend the DNA. PNAS USA 92: 8591–8595.

    Article  CAS  Google Scholar 

  • Banerjee A, Santos WL, Verdine GL . (2006). Structure of a DNA glycosylase searching for lesions. Science 311: 1153–1157.

    Article  CAS  Google Scholar 

  • Banerjee A, Yang W, Karplus M, Verdine GL . (2005). Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Nature 434: 612.

    Article  CAS  Google Scholar 

  • Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265: 346–355.

    Article  CAS  Google Scholar 

  • DeLano WL . (2002). The PyMOL User's Manual. DeLano Scientific, Palo Alto, CA, USA.

  • El-Diery WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet 1: 45–49.

    Article  Google Scholar 

  • Emsley P, Cowtan K . (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.

    Article  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A . (2003). ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31: 3784–3788.

    Article  CAS  Google Scholar 

  • Gouet P, Courcelle E, Stuart DI, Metoz F . (1999). ESPript: multiple sequence alignments in PostScript. Bioinformatics 15: 305–308.

    Article  CAS  Google Scholar 

  • He C, Verdine GL . (2002). Trapping distinct structural states of a protein/DNA interaction through disulfide crosslinking. Chem Biol 9: 1297–1303.

    Article  CAS  Google Scholar 

  • Ho WC, Fitzgerald MX, Marmorstein R . (2006). Structure of the mouse p53 core domain dimer bound to DNA. J Biol Chem 281: 20494–20502.

    Article  CAS  Google Scholar 

  • Horn H, Vousden KH . (2007). Coping with stress: multiple ways to activate p53. Oncogene 26: 1306–1316.

    Article  CAS  Google Scholar 

  • Huang H, Chopra R, Verdine GL, Harrison SC . (1998). Structure of covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282: 1669–1675.

    Article  CAS  Google Scholar 

  • Jeffrey PD, Gorina S, Pavletich NP . (1995). Crystal Structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267: 1498–1502.

    Article  CAS  Google Scholar 

  • Kitayner M, Rosenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE et al. (2006). Structural basis of DNA recognition by p53 tetramers. Mol Cell 22: 741–753.

    Article  CAS  Google Scholar 

  • Klein C, Georges G, Kunkele KP, Huber R, Engh RA, Hansen S . (2001). High thermostability and lack of cooperative DNA binding distinguish the p63 core domain from the homologous tumor suppressor p53. J Biol Chem 276: 37390–37401.

    Article  CAS  Google Scholar 

  • Lu X-L, Olson WK . (2003). 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31: 5108–5121.

    Article  CAS  Google Scholar 

  • MacMillan AM, Verdine GL . (1991). Engineering tethered DNA molecules by the convertible nucleoside approach. Tetrahedron 47: 2603–2616.

    Article  CAS  Google Scholar 

  • McClure KG, Lee PWK . (1998). How p53 binds DNA as a tetramer. EMBO J 17: 3342–3350.

    Article  Google Scholar 

  • McNamara PT, Bolshoy A, Trifonov EN, Harrington RE . (1990). Sequence-dependent kinks induced in curved DNA. Journal of Biomolecular Structural Dynamics 8: 529–538.

    Article  CAS  Google Scholar 

  • Nagaich AK, Apella E, Harrington RE . (1997a). DNA bending is essential for the site-specific recognition of DNA reponse elements by the DNA binding domain of the tumor suppressor protein p53. J Biol Chem 272: 14842–14849.

    Article  CAS  Google Scholar 

  • Nagaich AK, Bhattacharyya D, Brahmachari SK, Bansal M . (1994). CA/TG sequence at the 5′ end of oligo(A)-tracts strongly modulates DNA curvature. J Biol Chem 269: 7824–7833.

    CAS  PubMed  Google Scholar 

  • Nagaich AK, Zhurkin VB, Durell SR, Jernigan RL, Apella E, Harrington RE . (1999). p53-induced DNA bending and twisting: p53 tetramer binds on the outer side of a DNA loop and increases DNA twisting. PNAS USA 96: 1875–1880.

    Article  CAS  Google Scholar 

  • Nagaich AK, Zhurkin VB, Sakamoto H, Gorin AA, Clore GM, Gronenborn AM et al. (1997b). Architectural accomodation in the Complex of four p53 DNA binding domain peptides with the p21/waf1/cip1 DNA response element. J Biol Chem 272: 14830–14841.

    Article  CAS  Google Scholar 

  • Otwinowski Z, Minor W . (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307–326.

    Article  CAS  Google Scholar 

  • Pan Y, Nussinov R . (2007). Structural Basis for p53 binding-induced DNA bending. J Biol Chem 282: 691–699.

    Article  CAS  Google Scholar 

  • Pan Y, Nussinov R . (2008). p53-induced DNA bending: the interplay between p53-DNA and p53-p53 interactions. J Phys Chem B112: 6716–6724.

    Article  Google Scholar 

  • Pietenpol JA, Tokino T, Thiagaligam S, El-Diery WS, Kinzler KW, Vogelstein B . (1994). Sequence-specific transcriptional activation is essential for growth suppression by p53. PNAS USA 91: 1998–2000.

    Article  CAS  Google Scholar 

  • Verdine GL, Norman DPG . (2003). Covalent trapping of protein-DNA complexes. Annu Rev Biochem 72: 337–366.

    Article  CAS  Google Scholar 

  • Wang Y, Rosengarth A, Luecke H . (2007). Structure of the human p53 core domain in the absence of DNA. Acta Crystallogr D 63: 276–281.

    Article  CAS  Google Scholar 

  • Weinberg RL, Veprintsev DB, Fersht AR . (2004). Cooperative binding of tetrameric p53 to DNA. J Mol Biol 341: 1145–1159.

    Article  CAS  Google Scholar 

  • Zhao K, Chai X, Johnston K, Clements A, Marmorstein R . (2001). Crystal structure of the mouse p53 Core DNA-binding domain at 2.7 A resolution. J Biol Chem 276: 12120–12127.

    Article  CAS  Google Scholar 

  • Zhurkin VB, Ulyanov NB, Gorin AA, Jernigan RL . (1991). Static and statistical bending of DNA evaluated by Monte Carlo simulations. Proc Natl Acad Sci USA 88: 7046–7050.

    Article  CAS  Google Scholar 

  • Zupnick A, Prives C . (2006). Mutational analysis of the p53 core domain L1 loop. J Biol Chem 281: 20464–20473.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Marmorstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malecka, K., Ho, W. & Marmorstein, R. Crystal structure of a p53 core tetramer bound to DNA. Oncogene 28, 325–333 (2009). https://doi.org/10.1038/onc.2008.400

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.400

Keywords

This article is cited by

Search

Quick links