Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PTEN deficiency accelerates tumour progression in a mouse model of thyroid cancer

Abstract

Inactivation and silencing of PTEN have been observed in multiple cancers, including follicular thyroid carcinoma. PTEN (phosphatase and tensin homologue deleted from chromosome 10) functions as a tumour suppressor by opposing the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling pathway. Despite correlative data, how deregulated PTEN signalling leads to thyroid carcinogenesis is not known. Mice harbouring a dominant-negative mutant thyroid hormone receptor β (TRβPV/PV mice) spontaneously develop follicular thyroid carcinoma and distant metastases similar to human cancer. To elucidate the role of PTEN in thyroid carcinogenesis, we generated TRβPV/PV mice haploinsufficient for Pten (TRβPV/PVPten+/− mouse). PTEN deficiency accelerated the progression of thyroid tumour and increased the occurrence of metastasis spread to the lung in TRβPV/PVPten+/− mice, thereby significantly reducing their survival as compared with TRβPV/PVPten+/+ mice. AKT activation was further increased by two-fold in TRβPV/PVPten+/− mice thyroids, leading to increased activity of the downstream mammalian target of rapamycin (mTOR)–p70S6K signalling and decreased activity of the forkhead family member FOXO3a. Consistently, cyclin D1 expression was increased. Apoptosis was decreased as indicated by increased expression of nuclear factor-κB (NF-κB) and decreased caspase-3 activity in the thyroids of TRβPV/PVPten+/− mice. Our results indicate that PTEN deficiency resulted in increased cell proliferation and survival in the thyroids of TRβPV/PVPten+/− mice. Altogether, our study provides direct evidence to indicate that in vivo, PTEN is a critical regulator in the follicular thyroid cancer progression and invasiveness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AKT:

protein kinase B

mTOR:

mammalian target of rapamycin

PI3K:

phosphatidylinositol 3-kinase

TRβ:

thyroid hormone receptor β gene

TSH:

thyroid-stimulating hormone

References

  • Abdel-Latif MM, Kelleher D, Reynolds JV . (2008). Potential role of NF-kappaB in esophageal adenocarcinoma: as an emerging molecular target. J Surg Res (in press).

  • Blanco-Aparicio C, Renner O, Leal JF, Carnero A . (2007). PTEN, more than the AKT pathway. Carcinogenesis 28: 1379–1386.

    Article  CAS  Google Scholar 

  • Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP . (1998). Pten is essential for embryonic development and tumour suppression. Nat Genet 19: 348–355.

    Article  CAS  Google Scholar 

  • Eng C . (2002). Role of PTEN, a lipid phosphatase upstream effector of protein kinase B, in epithelial thyroid carcinogenesis. Ann N Y Acad Sci 968: 213–221.

    Article  CAS  Google Scholar 

  • Furumoto H, Ying H, Chandramouli GV, Zhao L, Walker RL, Meltzer PS et al. (2005). An unliganded thyroid hormone beta receptor activates the cyclin D1/cyclin-dependent kinase/retinoblastoma/E2F pathway and induces pituitary tumorigenesis. Mol Cell Biol 25: 124–135.

    Article  CAS  Google Scholar 

  • Furuya F, Hanover JA, Cheng SY . (2006). Activation of phosphatidylinositol 3-kinase signaling by a mutant thyroid hormone beta receptor. Proc Natl Acad Sci USA 103: 1780–1785.

    Article  CAS  Google Scholar 

  • Furuya F, Lu C, Willingham MC, Cheng SY . (2007). Inhibition of phosphatidylinositol 3-kinase delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer. Carcinogenesis 28: 2451–2458.

    Article  CAS  Google Scholar 

  • Greer EL, Brunet A . (2005). FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24: 7410–7425.

    Article  CAS  Google Scholar 

  • Guertin DA, Sabatini DM . (2007). Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.

    Article  CAS  Google Scholar 

  • Jiang BH, Liu LZ . (2008). PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochem Biophys Acta 1784: 150–158.

    CAS  PubMed  Google Scholar 

  • Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA et al. (2000). Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA 97: 13209–13214.

    Article  CAS  Google Scholar 

  • Kato Y, Ying H, Zhao L, Furuya F, Araki O, Willingham MC et al. (2006). PPARgamma insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-kappaB signaling pathway. Oncogene 25: 2736–2747.

    Article  CAS  Google Scholar 

  • Kim CS, Vasko VV, Kato Y, Kruhlak M, Saji M, Cheng SY et al. (2005). AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma. Endocrinology 146: 4456–4463.

    Article  CAS  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    Article  CAS  Google Scholar 

  • Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z et al (1997). Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16: 64–67.

    Article  CAS  Google Scholar 

  • Lu TL, Chang JL, Liang CC, You LR, Chen CM . (2007). Tumor spectrum, tumor latency and tumor incidence of the Pten-deficient mice. PLoS ONE 2: e1237, 1–13.

    Article  Google Scholar 

  • Marsh DJ, Dahia PL, Zheng Z, Liaw D, Parsons R, Gorlin RJ et al. (1997). Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet 16: 333–334.

    Article  CAS  Google Scholar 

  • Meier CA, Dickstein BM, Ashizawa K, McClaskey JH, Muchmore P, Ransom SC et al. (1992). Variable transcriptional activity and ligand binding of mutant beta 1 3,5,3′-triiodothyronine receptors from four families with generalized resistance to thyroid hormone. Mol Endocrinol 6: 248–258.

    CAS  PubMed  Google Scholar 

  • Nelen MR, van Staveren WC, Peeters EA, Hassel MB, Gorlin RJ, Hamm H et al. (1997). Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet 6: 1383–1387.

    Article  CAS  Google Scholar 

  • Neri LM, Borgatti P, Capitani S, Martelli AM . (2002). The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim Biophys Acta 1584: 73–80.

    Article  CAS  Google Scholar 

  • Parrilla R, Mixson AJ, McPherson JA, McClaskey JH, Weintraub BD . (1991). Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds with generalized thyroid hormone resistance. Evidence for two ‘hot spot’ regions of the ligand binding domain. J Clin Invest 88: 2123–2130.

    Article  CAS  Google Scholar 

  • Pervin S, Singh R, Chaudhuri G . (2001). Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1. Proc Natl Acad Sci USA 98: 3583–3588.

    Article  CAS  Google Scholar 

  • Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM et al. (1999). Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 96: 1563–1568.

    Article  CAS  Google Scholar 

  • Ramaswamy S, Nakamura N, Sansal I, Bergeron L, Sellers WR . (2002). A novel mechanism of gene regulation and tumor suppression by the transcription factor FKHR. Cancer Cell 2: 81–91.

    Article  CAS  Google Scholar 

  • Rivas M, Santisteban P . (2003). TSH-activated signaling pathways in thyroid tumorigenesis. Mol Cell Endocrinol 213: 31–45.

    Article  CAS  Google Scholar 

  • Schlumberger M, Baudin E, Travagli JP . (1998). Papillary and follicular cancers of the thyroid. Presse Med 27: 1479–1481.

    CAS  PubMed  Google Scholar 

  • Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW et al. (2002). Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22: 7842–7852.

    Article  CAS  Google Scholar 

  • Shepherd PR, Nave BT, Rincon J, Haigh RJ, Foulstone E, Proud C et al. (1997). Involvement of phosphoinositide 3-kinase in insulin stimulation of MAP-kinase and phosphorylation of protein kinase-B in human skeletal muscle: implications for glucose metabolism. Diabetologia 40: 1172–1177.

    Article  CAS  Google Scholar 

  • Sherman SI, Brierley JD, Sperling M, Ain KB, Bigos ST, Cooper DS et al. (1998). Prospective multicenter study of thyroid carcinoma treatment: initial analysis of staging and outcome. National Thyroid Cancer Treatment Cooperative Study Registry Group. Cancer 83: 1012–1021.

    Article  CAS  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: 356–362.

    Article  CAS  Google Scholar 

  • Suzuki A, de la Pompa JL, Stambolic V, Elia AJ, Sasaki T, del Barco Barrantes I et al. (1998). High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol 8: 1169–1178.

    Article  CAS  Google Scholar 

  • Suzuki H, Willingham MC, Cheng SY . (2002). Mice with a mutation in the thyroid hormone receptor beta gene spontaneously develop thyroid carcinoma: a mouse model of thyroid carcinogenesis. Thyroid 12: 963–969.

    Article  CAS  Google Scholar 

  • Uppal S, Mistry D, Coatesworth AP . (2007). Cowden disease: a review. Int J Clin Pract 61: 645–652.

    Article  CAS  Google Scholar 

  • Wymann MP, Marone R . (2005). Phosphoinositide 3-kinase in disease: timing, location, and scaffolding. Curr Opin Cell Biol 17: 141–149.

    Article  CAS  Google Scholar 

  • Yeager N, Klein-Szanto A, Kimura S, Di Cristofano A . (2007). Pten loss in the mouse thyroid causes goiter and follicular adenomas: insights into thyroid function and Cowden disease pathogenesis. Cancer Res 67: 959–966.

    Article  CAS  Google Scholar 

  • Yen PM . (2003). Molecular basis of resistance to thyroid hormone. Trends Endocrinol Metab 14: 327–333.

    Article  CAS  Google Scholar 

  • Ying H, Suzuki H, Furumoto H, Walker R, Meltzer P, Willingham MC et al. (2003). Alterations in genomic profiles during tumor progression in a mouse model of follicular thyroid carcinoma. Carcinogenesis 24: 1467–1479.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Hao Ying for assistance in the determination of thyroid function tests. This research was supported by the Intramural Research Program of Center for Cancer Research, National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-Y Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guigon, C., Zhao, L., Willingham, M. et al. PTEN deficiency accelerates tumour progression in a mouse model of thyroid cancer. Oncogene 28, 509–517 (2009). https://doi.org/10.1038/onc.2008.407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.407

Keywords

This article is cited by

Search

Quick links