Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

PAK signaling in oncogenesis

Abstract

The p21-activated kinase (PAK) family of serine/threonine kinases is important in physiological processes including motility, survival, mitosis, transcription and translation. PAKs are evolutionally conserved and widely expressed in a variety of tissues and are often overexpressed in multiple cancer types. Depending on structural and functional similarities, the six members of PAK family are divided into two groups with three members in each group. Group I PAKs are activated by extracellular signals through GTPase-dependent and GTPase-independent mechanisms. In contrast, group II PAKs are constitutively active. Over the years, accumulating data from tissue culture models and human tumors has increased our understanding about the biology of PAK family members. In this review, we have summarized the complex regulation of PAK and its downstream diverse myriads of effectors, which in turn are responsible for the biological effects of PAK family of kinases in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abo A, Qu J, Cammarano MS, Dan C, Fritsch A, Baud V et al. (1998). PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J 17: 6527–6540.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed S, Prigmore E, Govind S, Veryard C, Kozma R, Wientjes FB et al. (1998). Cryptic Rac-binding and p21(Cdc42Hs/Rac)-activated kinase phosphorylation sites of NADPH oxidase component p67(phox). J Biol Chem 273: 15693–15701.

    CAS  PubMed  Google Scholar 

  • Alahari SK, Reddig PJ, Juliano RL . (2004). The integrin-binding protein Nischarin regulates cell migration by inhibiting PAK. EMBO J 23: 2777–2788.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-Romero LE, Chernoff J . (2008). A tale of two Paks. Biol Cell 100: 97–108.

    CAS  PubMed  Google Scholar 

  • Bagheri-Yarmand R, Mazumdar A, Sahin AA, Kumar R . (2006). LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system. Int J Cancer 118: 2703–2710.

    CAS  PubMed  Google Scholar 

  • Banerjee M, Worth D, Prowse DM, Nikolic M . (2002). Pak1 phosphorylation on t212 affects microtubules in cells undergoing mitosis. Curr Biol 12: 1233–1239.

    CAS  PubMed  Google Scholar 

  • Belletti B, Nicoloso MS, Schiappacassi M, Berton S, Lovat F, Wolf K et al. (2008). Stathmin activity influences sarcoma cell shape, motility, and metastatic potential. Mol Biol Cell 19: 2003–2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bienvenu T, des Portes V, McDonell N, Carrie A, Zemni R, Couvert P et al. (2000). Missense mutation in PAK3, R67C, causes X-linked nonspecific mental retardation. Am J Med Genet 93: 294–298.

    CAS  PubMed  Google Scholar 

  • Block MR, Badowski C, Millon-Fremillon A, Bouvard D, Bouin AP, Faurobert E et al. (2008). Podosome-type adhesions and focal adhesions, so alike yet so different. Eur J Cell Biol 87: 491–506.

    CAS  PubMed  Google Scholar 

  • Bokoch GM . (2003). Biology of the p21-activated kinases. Annu Rev Biochem 72: 743–781.

    CAS  PubMed  Google Scholar 

  • Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H et al. (2002). BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415: 922–926.

    CAS  PubMed  Google Scholar 

  • Brecht M, Steenvoorden AC, Collard JG, Luf S, Erz D, Bartram CR et al. (2005). Activation of gef-h1, a guanine nucleotide exchange factor for RhoA, by DNA transfection. Int J Cancer 113: 533–540.

    CAS  PubMed  Google Scholar 

  • Buday L, Downward J . (2007). Roles of cortactin in tumor pathogenesis. Biochim Biophys Acta 1775: 263–273.

    CAS  PubMed  Google Scholar 

  • Callow MG, Clairvoyant F, Zhu S, Schryver B, Whyte DB, Bischoff JR et al. (2002). Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J Biol Chem 277: 550–558.

    CAS  PubMed  Google Scholar 

  • Callow MG, Zozulya S, Gishizky ML, Jallal B, Smeal T . (2005). PAK4 mediates morphological changes through the regulation of GEF-H1. J Cell Sci 118: 1861–1872.

    CAS  PubMed  Google Scholar 

  • Cammarano MS, Nekrasova T, Noel B, Minden A . (2005). Pak4 induces premature senescence via a pathway requiring p16INK4/p19ARF and mitogen-activated protein kinase signaling. Mol Cell Biol 25: 9532–9542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassimeris L . (2002). The oncoprotein 18/stathmin family of microtubule destabilizers. Curr Opin Cell Biol 14: 18–24.

    CAS  PubMed  Google Scholar 

  • Chen S, Yin X, Zhu X, Yan J, Ji S, Chen C et al. (2003). The C-terminal kinase domain of the p34cdc2-related PITSLRE protein kinase (p110C) associates with p21-activated kinase 1 and inhibits its activity during anoikis. J Biol Chem 278: 20029–20036.

    CAS  PubMed  Google Scholar 

  • Chen S, Auletta T, Dovirak O, Hutter C, Kuntz K, El-Ftesi S et al. (2008). Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Cancer Biol Ther 7: 1793–1802.

    CAS  PubMed  Google Scholar 

  • Chew TL, Masaracchia RA, Goeckeler ZM, Wysolmerski RB . (1998). Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (gamma-PAK). J Muscle Res Cell Motil 19: 839–854.

    CAS  PubMed  Google Scholar 

  • Chong C, Tan L, Lim L, Manser E . (2001). The mechanism of PAK activation autophosphorylation events in both regulatory and kinase domains control activity. J Biol Chem 276: 17347–17353.

    CAS  PubMed  Google Scholar 

  • Come C, Arnoux V, Bibeau F, Savagner P . (2004). Roles of the transcription factors snail and slug during mammary morphogenesis and breast carcinoma progression. J Mammary Gland Biol Neoplasia 9: 183–193.

    PubMed  PubMed Central  Google Scholar 

  • Cotteret S, Chernoff J . (2006). Nucleocytoplasmic shuttling of Pak5 regulates its antiapoptotic properties. Mol Cell Biol 26: 3215–3230.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cotteret S, Jaffer ZM, Beeser A, Chernoff J . (2003). P21-activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol Cell Biol 23: 5526–5539.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dan C, Kelly A, Bernard O, Minden A . (2001). Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem 276: 32115–32121.

    CAS  PubMed  Google Scholar 

  • Dan C, Nath N, Liberto M, Minden A . (2002). PAK5, a new brain-specific kinase, promotes neurite outgrowth in N1E-115 cells. Mol Cell Biol 22: 567–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davila M, Frost AR, Grizzle WE, Chakrabarti R . (2003). LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer. J Biol Chem 278: 36868–36875.

    CAS  PubMed  Google Scholar 

  • Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J et al. (2008). An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 15: 322–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards DC, Sanders LC, Bokoch GM, Gill GN . (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1: 253–259.

    CAS  PubMed  Google Scholar 

  • Gatti A, Huang Z, Tuazon PT, Traugh JA . (1999). Multisite autophosphorylation of p21-activated protein kinase gamma-PAK as a function of activation. J Biol Chem 274: 8022–8028.

    CAS  PubMed  Google Scholar 

  • Gedeon AK, Nelson J, Gecz J, Mulley JC . (2003). X-linked mild non-syndromic mental retardation with neuropsychiatric problems and the missense mutation A365E in PAK3. Am J Med Genet A 120A: 509–517.

    PubMed  Google Scholar 

  • Gnesutta N, Minden A . (2003). Death receptor-induced activation of initiator caspase 8 is antagonized by serine/threonine kinase PAK4. Mol Cell Biol 23: 7838–7848.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gnesutta N, Qu J, Minden A . (2001). The serine/threonine kinase PAK4 prevents caspase activation and protects cells from apoptosis. J Biol Chem 276: 14414–14419.

    CAS  PubMed  Google Scholar 

  • Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature 446: 153–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grooteclaes ML, Frisch SM . (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 19: 3823–3828.

    CAS  PubMed  Google Scholar 

  • Hashimoto S, Tsubouchi A, Mazaki Y, Sabe H . (2001). Interaction of paxillin with p21-activated Kinase (PAK) Association of paxillin alpha with the kinase-inactive and the Cdc42-activated forms of PAK3. J Biol Chem 276: 6037–6045.

    CAS  PubMed  Google Scholar 

  • He H, Hirokawa Y, Gazit A, Yamashita Y, Mano H, Kawakami Y et al. (2004). The Tyr-kinase inhibitor AG879, that blocks the ETK-PAK1 interaction, suppresses the RAS-induced PAK1 activation and malignant transformation. Cancer Biol Ther 3: 96–101.

    CAS  PubMed  Google Scholar 

  • Hirokawa Y, Arnold M, Nakajima H, Zalcberg J, Maruta H . (2005). Signal therapy of breast cancers by the HDAC inhibitor FK228 that blocks the activation of PAK1 and abrogates the tamoxifen-resistance. Cancer Biol Ther 4: 956–960.

    CAS  PubMed  Google Scholar 

  • Hoefen RJ, Berk BC . (2006). The multifunctional GIT family of proteins. J Cell Sci 119: 1469–1475.

    CAS  PubMed  Google Scholar 

  • Hofmann C, Shepelev M, Chernoff J . (2004). The genetics of Pak. J Cell Sci 117: 4343–4354.

    CAS  PubMed  Google Scholar 

  • Jakobi R, McCarthy CC, Koeppel MA, Stringer DK . (2003). Caspase-activated PAK-2 is regulated by subcellular targeting and proteasomal degradation. J Biol Chem 278: 38675–38685.

    CAS  PubMed  Google Scholar 

  • Jakobi R, Moertl E, Koeppel MA . (2001). P21-activated protein kinase gamma-PAK suppresses programmed cell death of BALB3T3 fibroblasts. J Biol Chem 276: 16624–16634.

    CAS  PubMed  Google Scholar 

  • Jung JH, Traugh JA . (2005). Regulation of the interaction of Pak2 with Cdc42 via autophosphorylation of serine 141. J Biol Chem 280: 40025–40031.

    CAS  PubMed  Google Scholar 

  • Kaur R, Yuan X, Lu ML, Balk SP . (2008). Increased PAK6 expression in prostate cancer and identification of PAK6 associated proteins. Prostate 68: 1510–1516.

    CAS  PubMed  Google Scholar 

  • Kimmelman AC, Hezel AF, Aguirre AJ, Zheng H, Paik JH, Ying H et al. (2008). Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proc Natl Acad Sci USA 105: 19372–19377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S et al. (1998). The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396: 180–183.

    CAS  PubMed  Google Scholar 

  • Knaus UG, Morris S, Dong HJ, Chernoff J, Bokoch GM . (1995). Regulation of human leukocyte p21-activated kinases through G protein-coupled receptors. Science 269: 221–223.

    CAS  PubMed  Google Scholar 

  • Koeppel MA, McCarthy CC, Moertl E, Jakobi R . (2004). Identification and characterization of PS-GAP as a novel regulator of caspase-activated PAK-2. J Biol Chem 279: 53653–53664.

    CAS  PubMed  Google Scholar 

  • Koh CG, Tan EJ, Manser E, Lim L . (2002). The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Curr Biol 12: 317–321.

    CAS  PubMed  Google Scholar 

  • Kreis P, Rousseau V, Thévenot E, Combeau G, Barnier JV . (2008). The four mammalian splice variants encoded by the p21-activated kinase 3 gene have different biological properties. J Neurochem 106: 1184–1197.

    CAS  PubMed  Google Scholar 

  • Krendel M, Zenke FT, Bokoch GM . (2002). Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4: 294–301.

    CAS  PubMed  Google Scholar 

  • Kumar R, Gururaj AE, Barnes CJ . (2006). P21-activated kinases in cancer. Nat Rev Cancer 6: 459–471.

    CAS  PubMed  Google Scholar 

  • Lee SR, Ramos SM, Ko A, Masiello D, Swanson KD, Lu ML et al. (2002). AR and ER interaction with a p21-activated kinase (PAK6). Mol Endocrinol 16: 85–99.

    CAS  PubMed  Google Scholar 

  • Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ et al. (2000). Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102: 387–397.

    CAS  PubMed  Google Scholar 

  • Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J et al. (2002). P21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 3: 767–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Minden A . (2003). Targeted disruption of the gene for the PAK5 kinase in mice. Mol Cell Biol 23: 7134–7142.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling J, Morley SJ, Traugh JA . (2005). Inhibition of cap-dependent translation via phosphorylation of eIF4G by protein kinase Pak2. EMBO J 24: 4094–4105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lua BL, Low BC . (2005). Cortactin phosphorylation as a switch for actin cytoskeletal network and cell dynamics control. FEBS Lett 579: 577–585.

    CAS  PubMed  Google Scholar 

  • Manser E, Huang HY, Loo TH, Chen XQ, Dong JM, Leung T et al. (1997). Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol 17: 1129–1143.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L . (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367: 40–46.

    CAS  PubMed  Google Scholar 

  • Maroto B, Ye MB, von Lohneysen K, Schnelzer A, Knaus UG . (2008). P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 27: 4900–4908.

    CAS  PubMed  Google Scholar 

  • Mazumdar A, Kumar R . (2003). Estrogen regulation of Pak1 and FKHR pathways in breast cancer cells. FEBS Lett 535: 6–10.

    CAS  PubMed  Google Scholar 

  • Meng J, Meng Y, Hanna A, Janus C, Jia Z . (2005). Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J Neurosci 25: 6641–6650.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Q, Rayala SK, Gururaj AE, Talukder AH, O′Malley BW, Kumar R . (2007). Signaling-dependent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1. Proc Natl Acad Sci USA 104: 5866–5871.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misra UK, Deedwania R, Pizzo SV . (2005). Binding of activated alpha 2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J Biol Chem 280: 26278–26286.

    CAS  PubMed  Google Scholar 

  • Morita T, Mayanagi T, Yoshio T, Sobue K . (2007). Changes in the balance between caldesmon regulated by p21-activated kinases and the Arp2/3 complex govern podosome formation. J Biol Chem 282: 8454–8463.

    CAS  PubMed  Google Scholar 

  • Nheu T, He H, Hirokawa Y, Walker F, Wood J, Maruta H . (2004). PAK is essential for RAS-induced upregulation of cyclin D1 during the G1 to S transition. Cell Cycle 3: 71–74.

    CAS  PubMed  Google Scholar 

  • Pandey A, Dan I, Kristiansen TZ, Watanabe NM, Voldby J, Kajikawa E et al. (2002). Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene 21: 3939–3948.

    CAS  PubMed  Google Scholar 

  • Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L et al. (2005). Colorectal cancer: mutations in a signalling pathway. Nature 436: 792.

    CAS  PubMed  Google Scholar 

  • Pirruccello M, Sondermann H, Pelton JG, Pellicena P, Hoelz A, Chernoff J et al. (2006). A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases. J Mol Biol 361: 312–326.

    CAS  PubMed  Google Scholar 

  • Puthalakath H, Huang DC, O′Reilly LA, King SM, Strasser A . (1999). The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3: 287–296.

    CAS  PubMed  Google Scholar 

  • Qu J, Cammarano MS, Shi Q, Ha KC, De Lanerolle P, Minden A . (2001). Activated PAK4 regulates cell adhesion and anchorage-independent growth. Mol Cell Biol 21: 3523–3533.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu J, Li X, Novitch BG, Zheng Y, Kohn M, Xie JM et al. (2003). PAK4 kinase is essential for embryonic viability and for proper neuronal development. Mol Cell Biol 23: 7122–7133.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rayala SK, Talukder AH, Balasenthil S, Tharakan R, Barnes CJ, Wang RA et al. (2006). P21-activated kinase 1 regulation of estrogen receptor-alpha activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Res 66: 1694–1701.

    CAS  PubMed  Google Scholar 

  • Roig J, Traugh JA . (1999). P21-activated protein kinase gamma-PAK is activated by ionizing radiation and other DNA-damaging agents Similarities and differences to alpha-PAK. J Biol Chem 274: 31119–31122.

    CAS  PubMed  Google Scholar 

  • Rousseau V, Goupille O, Morin N, Barnier JV . (2003). A new constitutively active brain PAK3 isoform displays modified specificities toward Rac and Cdc42 GTPases. J Biol Chem 278: 3912–3920.

    CAS  PubMed  Google Scholar 

  • Schatten H . (2008). The mammalian centrosome and its functional significance. Histochem Cell Biol 129: 667–686.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schurmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC et al. (2000). P21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol 20: 453–461.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sells MA, Knaus UG, Bagrodia S, Ambrose DM, Bokoch GM, Chernoff J . (1997). Human p21-activated kinase (Pak1) regulates actin organization in mammalian cells. Curr Biol 7: 202–210.

    CAS  PubMed  Google Scholar 

  • Settleman J . (2007). PAK-in′ up cGMP for the move. Cell 128: 237–238.

    CAS  PubMed  Google Scholar 

  • Singh RR, Song C, Yang Z, Kumar R . (2005). Nuclear localization and chromatin targets of p21-activated kinase 1. J Biol Chem 280: 18130–18137.

    CAS  PubMed  Google Scholar 

  • Thiel DA, Reeder MK, Pfaff A, Coleman TR, Sells MA, Chernoff J . (2002). Cell cycle-regulated phosphorylation of p21-activated kinase 1. Curr Biol 12: 1227–1232.

    CAS  PubMed  Google Scholar 

  • Timm T, Matenia D, Li XY, Griesshaber B, Mandelkow EM . (2006). Signaling from MARK to tau: regulation, cytoskeletal crosstalk, and pathological phosphorylation. Neurodegener Dis 3: 207–217.

    CAS  PubMed  Google Scholar 

  • Totsukawa G, Wu Y, Sasaki Y, Hartshorne DJ, Yamakita Y, Yamashiro S et al. (2004). Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 164: 427–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner CE . (2000). Paxillin interactions. J Cell Sci 113: 4139–4140.

    CAS  PubMed  Google Scholar 

  • Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A et al. (2000). Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275: 36238–36244.

    CAS  PubMed  Google Scholar 

  • Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, Sahin AA et al. (2004a). Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell 5: 575–585.

    CAS  PubMed  Google Scholar 

  • Vadlamudi RK, Barnes CJ, Rayala S, Li F, Balasenthil S, Marcus S et al. (2005). P 21-activated kinase 1 regulates microtubule dynamics by phosphorylating tubulin cofactor B. Mol Cell Biol 25: 3726–3736.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vadlamudi RK, Li F, Adam L, Nguyen D, Ohta Y, Stossel TP et al. (2002). Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol 4: 681–690.

    CAS  PubMed  Google Scholar 

  • Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R . (2004b). P41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep 5: 154–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walter BN, Huang Z, Jakobi R, Tuazon PT, Alnemri ES, Litwack G et al. (1998). Cleavage and activation of p21-activated protein kinase gamma-PAK by CPP32 (caspase 3) Effects of autophosphorylation on activity. J Biol Chem 273: 28733–28739.

    CAS  PubMed  Google Scholar 

  • Wang RA, Vadlamudi RK, Bagheri-Yarmand R, Beuvink I, Hynes NE, Kumar R . (2003). Essential functions of p21-activated kinase 1 in morphogenesis and differentiation of mammary glands. J Cell Biol 161: 583–592.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RA, Zhang H, Balasenthil S, Medina D, Kumar R . (2006). PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 25: 2931–2936.

    CAS  PubMed  Google Scholar 

  • Webb BA, Zhou S, Eves R, Shen L, Jia L, Mak AS . (2006). Phosphorylation of cortactin by p21-activated kinase. Arch Biochem Biophys 456: 183–193.

    CAS  PubMed  Google Scholar 

  • Weisz HM, Volinsky N, Manser E, Yablonski D, Aronheim A . (2007). Autophosphorylation-dependent degradation of Pak1, triggered by the Rho-family GTPase, Chp. Biochem J 404: 487–497.

    Google Scholar 

  • Wittmann T, Bokoch GM, Waterman-Storer CM . (2004). Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J Biol Chem 279: 6196–6203.

    CAS  PubMed  Google Scholar 

  • Wu X, Frost JA . (2006). Multiple Rho proteins regulate the subcellular targeting of PAK5. Biochem Biophys Res Commun 351: 328–335.

    CAS  PubMed  Google Scholar 

  • Xiao GH, Beeser A, Chernoff J, Testa JR . (2002). P21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 277: 883–886.

    CAS  PubMed  Google Scholar 

  • Yang F, Li X, Sharma M, Zarnegar M, Lim B, Sun Z . (2001). Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem 276: 15345–15353.

    CAS  PubMed  Google Scholar 

  • Yang Z, Rayala S, Nguyen D, Vadlamudi RK, Chen S, Kumar R . (2005). Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail′s subcellular localization and functions. Cancer Res 65: 3179–3184.

    CAS  PubMed  Google Scholar 

  • Yoshioka K, Foletta V, Bernard O, Itoh K . (2003). A role for LIM kinase in cancer invasion. Proc Natl Acad Sci USA 100: 7247–7252.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan Q, Ge Q, Ohira T, Van Dyke T, Badwey JA . (2003). P21-activated kinase 2 in neutrophils can be regulated by phosphorylation at multiple sites and by a variety of protein phosphatases. J Immunol 171: 3785–3793.

    CAS  PubMed  Google Scholar 

  • Zhao ZS, Lim JP, Ng YW, Lim L, Manser E . (2005). The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell 20: 237–249.

    CAS  PubMed  Google Scholar 

  • Zhou GL, Zhuo Y, King CC, Fryer BH, Bokoch GM, Field J . (2003). Akt phosphorylation of serine 21 on Pak1 modulates Nck binding and cell migration. Mol Cell Biol 23: 8058–8069.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in Professor Kumar's laboratory is supported by NIH grants CA90970 and CA098823.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molli, P., Li, D., Murray, B. et al. PAK signaling in oncogenesis. Oncogene 28, 2545–2555 (2009). https://doi.org/10.1038/onc.2009.119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.119

Keywords

This article is cited by

Search

Quick links