Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells

Abstract

The tumor suppressor p53 preserves genome integrity by inducing transcription of genes controlling growth arrest or apoptosis. Transcriptional activation involves nucleosomal perturbation by chromatin remodeling enzymes. Mammalian SWI/SNF remodeling complexes incorporate either the Brahma-related gene 1 (BRG1) or Brahma (Brm) as the ATPase subunit. The observation that tumor cell lines harboring wild-type p53 specifically maintain expression of BRG1 and that BRG1 complexes with p53 prompted us to examine the role of BRG1 in regulation of p53. Remarkably, RNAi depletion of BRG1, but not Brm, led to the activation of endogenous wild-type p53 and cell senescence. We found a proline-rich region unique to BRG1 was required for binding to the histone acetyl transferase protein, CBP, as well as to p53. Ectopic expression of a proline-rich region deletion mutant BRG1 that is defective for CBP binding inhibited p53 destabilization. Importantly, RNAi knockdown of BRG1 and CBP reduced p53 poly-ubiquitination in vivo. In support of p53 inactivation by the combined activities of BRG1 and CBP, we show that DNA damage signals promoted disassociation of BRG1 from CBP, thereby allowing p53 accumulation. Our data demonstrate a novel function of the evolutionarily conserved chromatin remodeling subunit BRG1, which cooperates with CBP to constrain p53 activity and permit cancer cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Agalioti T, Lomvardas S, Parekh B, Yie J, Maniatis T, Thanos D . (2000). Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Cell 103: 667–678.

    Article  CAS  PubMed  Google Scholar 

  • Awasthi S, Sharma A, Wong K, Zhang J, Matlock EF, Rogers L et al. (2005). A human T-cell lymphotropic virus type 1 enhancer of Myc transforming potential stabilizes Myc-TIP60 transcriptional interactions. Mol Cell Biol 25: 6178–6198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks L, Spence P, Androphy E, Hubbert N, Matlashewski G, Murray A et al. (1987). Identification of human papillomavirus type 18 E6 polypeptide in cells derived from human cervical carcinomas. J Gen Virol 68: 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  • Barlev NA, Liu L, Chehab NH, Mansfield K, Harris KG, Halazonetis TD et al. (2001). Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol Cell 8: 1243–1254.

    CAS  PubMed  Google Scholar 

  • Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428: 431–437.

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W . (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15: 164–171.

    Article  CAS  PubMed  Google Scholar 

  • Brooks CL, Gu W . (2006). p53 ubiquitination: Mdm2 and beyond. Mol Cell 21: 307–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A et al. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6: 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  • Bultman SJ, Herschkowitz JI, Godfrey V, Gebuhr TC, Yaniv M, Perou CM et al. (2008). Characterization of mammary tumors from Brg1 heterozygous mice. Oncogene 27: 460–468.

    Article  CAS  PubMed  Google Scholar 

  • Chan HM, Narita M, Lowe SW, Livingston DM . (2005). The p400 E1A-associated protein is a novel component of the p53 – > p21 senescence pathway. Genes Dev 19: 196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahiya A, Gavin MR, Luo RX, Dean DC . (2000). Role of the LXCXE binding site in Rb function. Mol Cell Biol 20: 6799–6805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Serna IL, Carlson KA, Imbalzano AN . (2001). Mammalian SWI/SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet 27: 187–190.

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doan DN, Veal TM, Yan Z, Wang W, Jones SN, Imbalzano AN . (2004). Loss of the INI1 tumor suppressor does not impair the expression of multiple BRG1-dependent genes or the assembly of SWI/SNF enzymes. Oncogene 23: 3462–3473.

    Article  CAS  PubMed  Google Scholar 

  • Downs JA, Nussenzweig MC, Nussenzweig A . (2007). Chromatin dynamics and the preservation of genetic information. Nature 447: 951–958.

    Article  CAS  PubMed  Google Scholar 

  • Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J et al. (1994). The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79: 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Eckner R, Ewen ME, Newsome D, Gerdes M, DeCaprio JA, Lawrence JB et al. (1994). Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev 8: 869–884.

    Article  CAS  PubMed  Google Scholar 

  • Espinosa JM, Verdun RE, Emerson BM . (2003). p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol Cell 12: 1015–1027.

    Article  CAS  PubMed  Google Scholar 

  • Fazzio TG, Huff JT, Panning B . (2008). An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 134: 162–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank SR, Parisi T, Taubert S, Fernandez P, Fuchs M, Chan HM et al. (2003). MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep 4: 575–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaros S, Cirrincione GM, Muchardt C, Kleer CG, Michael CW, Reisman D . (2007). The reversible epigenetic silencing of BRM: implications for clinical targeted therapy. Oncogene 26: 7058–7066.

    Article  CAS  PubMed  Google Scholar 

  • Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L et al. (2007). Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448: 1063–1067.

    Article  CAS  PubMed  Google Scholar 

  • Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H et al. (2003). Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300: 342–344.

    Article  CAS  PubMed  Google Scholar 

  • He W, Dorn DC, Erdjument-Bromage H, Tempst P, Moore MA, Massague J . (2006). Hematopoiesis controlled by distinct TIF1gamma and Smad4 branches of the TGFbeta pathway. Cell 125: 929–941.

    Article  CAS  PubMed  Google Scholar 

  • Hengstermann A, Linares LK, Ciechanover A, Whitaker NJ, Scheffner M . (2001). Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc Natl Acad Sci USA 98: 1218–1223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain MA, Porras DL, Rowe MH, West JR, Song WJ, Schreiber WE et al. (2006). Increased pancreatic beta-cell proliferation mediated by CREB binding protein gene activation. Mol Cell Biol 26: 7747–7759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ionov Y, Matsui S, Cowell JK . (2004). A role for p300/CREB binding protein genes in promoting cancer progression in colon cancer cell lines with microsatellite instability. Proc Natl Acad Sci USA 101: 1273–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isakoff MS, Sansam CG, Tamayo P, Subramanian A, Evans JA, Fillmore CM et al. (2005). Inactivation of the Snf5 tumor suppressor stimulates cell cycle progression and cooperates with p53 loss in oncogenic transformation. Proc Natl Acad Sci USA 102: 17745–17750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadam S, Emerson BM . (2003). Transcriptional specificity of human SWI/SNF BRG1 and BRM chromatin remodeling complexes. Mol Cell 11: 377–389.

    Article  CAS  PubMed  Google Scholar 

  • Kaeser MD, Iggo RD . (2002). Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci USA 99: 95–100.

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Cui K, Zhao K . (2004). BRG1 controls the activity of the retinoblastoma protein via regulation of p21CIP1/WAF1/SDI. Mol Cell Biol 24: 1188–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazantsev A, Preisinger E, Dranovsky A, Goldgaber D, Housman D . (1999). Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc Natl Acad Sci USA 96: 11404–11409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khavari PA, Peterson CL, Tamkun JW, Mendel DB, Crabtree GR . (1993). BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366: 170–174.

    Article  CAS  PubMed  Google Scholar 

  • Klochendler-Yeivin A, Picarsky E, Yaniv M . (2006). Increased DNA damage sensitivity and apoptosis in cells lacking the Snf5/Ini1 subunit of the SWI/SNF chromatin remodeling complex. Mol Cell Biol 26: 2661–2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane DP . (1992). Cancer: p53, guardian of the genome. Nature 358: 15–16.

    Article  CAS  PubMed  Google Scholar 

  • Le Cam L, Linares LK, Paul C, Julien E, Lacroix M, Hatchi E et al. (2006). E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127: 775–788.

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Kim JW, Seo T, Hwang SG, Choi EJ, Choe J . (2002). SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J Biol Chem 277: 22330–22337.

    Article  CAS  PubMed  Google Scholar 

  • Lee KK, Workman JL . (2007). Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8: 284–295.

    Article  CAS  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL . (2007). The role of chromatin during transcription. Cell 128: 707–719.

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Xu S, Joazeiro C, Cobb MH, Hunter T . (2002). The PHD domain of MEKK1 acts as an E3 ubiquitin ligase and mediates ubiquitination and degradation of ERK1/2. Mol Cell 9: 945–956.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Banine F, Struve J, Xing R, Adams C, Liu Y et al. (2006). Brg1 is required for murine neural stem cell maintenance and gliogenesis. Dev Biol 289: 372–383.

    Article  CAS  PubMed  Google Scholar 

  • Miyabayashi T, Teo JL, Yamamoto M, McMillan M, Nguyen C, Kahn M . (2007). Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci USA 104: 5668–5673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchardt C, Bourachot B, Reyes JC, Yaniv M . (1998). ras transformation is associated with decreased expression of the brm/SNF2alpha ATPase from the mammalian SWI-SNF complex. Embo J 17: 223–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchardt C, Yaniv M . (2001). When the SWI/SNF complex remodels.the cell cycle. Oncogene 20: 3067–3075.

    Article  CAS  PubMed  Google Scholar 

  • Nagl Jr NG, Wang X, Patsialou A, Van Scoy M, Moran E . (2007). Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. Embo J 26: 752–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napolitano MA, Cipollaro M, Cascino A, Melone MA, Giordano A, Galderisi U . (2007). Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells. J Cell Sci 120: 2904–2911.

    Article  CAS  PubMed  Google Scholar 

  • Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B . (1992). Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358: 80–83.

    Article  CAS  PubMed  Google Scholar 

  • Papamichos-Chronakis M, Krebs JE, Peterson CL . (2006). Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev 20: 2437–2449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel JH, Du Y, Ard PG, Phillips C, Carella B, Chen CJ et al. (2004). The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol Cell Biol 24: 10826–10834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM . (2002). Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc Natl Acad Sci USA 99: 14789–14794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes JC, Barra J, Muchardt C, Camus A, Babinet C, Yaniv M . (1998). Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). Embo J 17: 6979–6991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ . (2001). The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol 2: 731–737.

    Article  CAS  PubMed  Google Scholar 

  • Soussi T, Wiman KG . (2007). Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12: 303–312.

    Article  CAS  PubMed  Google Scholar 

  • Squatrito M, Gorrini C, Amati B . (2006). Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol 16: 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Sun A, Tawfik O, Gayed B, Thrasher JB, Hoestje S, Li C et al (2007). Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and increased invasiveness in prostate cancers. Prostate 67: 203–213.

    Article  CAS  PubMed  Google Scholar 

  • Szutorisz H, Georgiou A, Tora L, Dillon N . (2006). The proteasome restricts permissive transcription at tissue-specific gene loci in embryonic stem cells. Cell 127: 1375–1388.

    Article  CAS  PubMed  Google Scholar 

  • Thomas MC, Chiang CM . (2005). E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell 17: 251–264.

    Article  CAS  PubMed  Google Scholar 

  • Tsukuda T, Fleming AB, Nickoloff JA, Osley MA . (2005). Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438: 379–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnell AS, Stewart GS, Grand RJ, Rookes SM, Martin A, Yamano H et al. (2005). The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature 438: 690–695.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Lane DP . (2007). p53 in health and disease. Nat Rev Mol Cell Biol 8: 275–283.

    Article  CAS  PubMed  Google Scholar 

  • Yamamichi N, Inada K, Ichinose M, Yamamichi-Nishina M, Mizutani T, Watanabe H et al. (2007). Frequent loss of Brm expression in gastric cancer correlates with histologic features and differentiation state. Cancer Res 67: 10727–10735.

    Article  CAS  PubMed  Google Scholar 

  • Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX et al. (2000). Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101: 79–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marius Pop and Andrew King for CBP and p300 shRNA, Andrew Turnell for GST–CBP fusion constructs, Yuval Bibi Nitzan for comments and assistance with the figures and Neal Silverman for assistance with baculovirus protein production. R01 CA107532 to SRG, R01 GM56244 to ANI and R01 CA107394 to EJA supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E J Androphy.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naidu, S., Love, I., Imbalzano, A. et al. The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene 28, 2492–2501 (2009). https://doi.org/10.1038/onc.2009.121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.121

Keywords

This article is cited by

Search

Quick links