Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of the Birt–Hogg–Dubé protein in mTOR activation and renal tumorigenesis

Abstract

Birt–Hogg–Dubé (BHD) syndrome is a tumor-suppressor gene disorder characterized by skin tumors, cystic lung disease and renal cell carcinoma. Very little is known about the molecular pathogenesis of BHD. Clinical similarities between BHD and tuberous sclerosis complex (TSC) suggest that the BHD and TSC proteins may function within a common pathway. The TSC proteins inhibit the activity of the mammalian target of rapamycin complex 1 (TORC1), and in Schizosaccharomyces pombe, Bhd and Tsc1/Tsc2 have opposing roles in the regulation of amino-acid homeostasis. We report here that in mammalian cells, downregulation of BHD reduces the phosphorylation of ribosomal protein S6, an indicator of TORC1 activity. To determine whether folliculin, the product of the BHD gene, regulates mammalian target of rapamycin activity in vivo, we generated a mouse with targeted inactivation of the Bhd gene. The mice developed spontaneous oncocytic cysts and tumors composed of cells that resemble the renal cell carcinomas in BHD patients. The cysts and tumors had low levels of phospho-S6. Taken together, these data indicate that folliculin regulates the activity of TORC1, and suggest a new paradigm in which both inappropriately high and inappropriately low levels of TORC1 activity can be associated with renal tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Baba M, Furihata M, Hong SB, Tessarollo L, Haines DC, Southon E et al. (2008). Kidney-targeted Birt–Hogg–Dube gene inactivation in a mouse model: Erk1/2 and Akt-mTOR activation, cell hyperproliferation, and polycystic kidneys. J Natl Cancer Inst 100: 140–154.

    Article  CAS  Google Scholar 

  • Baba M, Hong SB, Sharma N, Warren MB, Nickerson ML, Iwamatsu A et al. (2006). Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc Natl Acad Sci USA 103: 15552–15557.

    Article  CAS  Google Scholar 

  • Babbitt JT, Kharazi AI, Taylor JM, Bonds CB, Mirell SG, Frumkin E et al. (2000). Hematopoietic neoplasia in C57BL/6 mice exposed to split-dose ionizing radiation and circularly polarized 60 Hz magnetic fields. Carcinogenesis 21: 1379–1389.

    Article  CAS  Google Scholar 

  • Ballif BA, Roux PP, Gerber SA, MacKeigan JP, Blenis J, Gygi SP . (2005). Quantitative phosphorylation profiling of the ERK/p90 ribosomal S6 kinase-signaling cassette and its targets, the tuberous sclerosis tumor suppressors. Proc Natl Acad Sci USA 102: 667–672.

    Article  CAS  Google Scholar 

  • Barbour GL, Casali RE . (1978). Bilateral angiomyolipomas and renal cell carcinoma in polycystic kidney. Urology 12: 694–698.

    Article  CAS  Google Scholar 

  • Birt AR, Hogg GR, Dube WJ . (1977). Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol 113: 1674–1677.

    Article  CAS  Google Scholar 

  • Cai SL, Tee AR, Short JD, Bergeron JM, Kim J, Shen J et al. (2006). Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 173: 279–289.

    Article  CAS  Google Scholar 

  • Carsillo T, Astrinidis A, Henske EP . (2000). Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci USA 97: 6085–6090.

    Article  CAS  Google Scholar 

  • Castro AF, Rebhun JF, Clark GJ, Quilliam LA . (2003). Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 278: 32493–32496.

    Article  CAS  Google Scholar 

  • Chen J, Futami K, Petillo D, Peng J, Wang P, Knol J et al. (2008). Deficiency of FLCN in mouse kidney led to development of polycystic kidneys and renal neoplasia. PLoS ONE 3: e3581.

    Article  Google Scholar 

  • Crino PB, Nathanson KL, Henske EP . (2006). The tuberous sclerosis complex. N Engl J Med 355: 1345–1356.

    Article  CAS  Google Scholar 

  • European Chromosome 16 Tuberous Sclerosis Consortium (1993). Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75: 1305–1315.

    Article  Google Scholar 

  • Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H et al. (2003). Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11: 1457–1466.

    Article  CAS  Google Scholar 

  • Harvey M, McArthur MJ, Montgomery Jr CA, Bradley A, Donehower LA . (1993). Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J 7: 938–943.

    Article  CAS  Google Scholar 

  • Hasumi H, Baba M, Hong SB, Hasumi Y, Huang Y, Yao M et al. (2008). Identification and characterization of a novel folliculin-interacting protein FNIP2. Gene 415: 60–67.

    Article  CAS  Google Scholar 

  • Henske EP, Neumann HP, Scheithauer BW, Herbst EW, Short MP, Kwiatkowski DJ . (1995). Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band 16p13 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Genes Chromosomes Cancer 13: 295–298.

    Article  CAS  Google Scholar 

  • Henske EP, Scheithauer BW, Short MP, Wollmann R, Nahmias J, Hornigold N et al. (1996). Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am J Hum Genet 59: 400–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hino O, Mitani H, Knudson AG . (1993). Genetic predisposition to transplacentally induced renal cell carcinomas in the Eker rat. Cancer Res 53: 5856–5858.

    CAS  PubMed  Google Scholar 

  • Hino O, Okimoto K, Kouchi M, Sakurai J . (2001). A novel renal carcinoma predisposing gene of the Nihon rat maps on chromosome 10. Jpn J Cancer Res 92: 1147–1149.

    Article  CAS  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan KL . (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829–1834.

    Article  CAS  Google Scholar 

  • Khoo SK, Giraud S, Kahnoski K, Chen J, Motorna O, Nickolov R et al. (2002). Clinical and genetic studies of Birt–Hogg–Dube syndrome. J Med Genet 39: 906–912.

    Article  CAS  Google Scholar 

  • Kobayashi T, Minowa O, Kuno J, Mitani H, Hino O, Noda T . (1999). Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res 59: 1206–1211.

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Minowa O, Sugitani Y, Takai S, Mitani H, Kobayashi E et al. (2001). A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci USA 98: 8762–8767.

    Article  CAS  Google Scholar 

  • Kouchi M, Okimoto K, Matsumoto I, Tanaka K, Yasuba M, Hino O . (2006). Natural history of the Nihon (Bhd gene mutant) rat, a novel model for human Birt–Hogg–Dube syndrome. Virchows Arch 448: 463–471.

    Article  Google Scholar 

  • Leter EM, Koopmans AK, Gille JJ, van Os TA, Vittoz GG, David EF et al. (2008). Birt–Hogg–Dube syndrome: clinical and genetic studies of 20 families. J Invest Dermatol 128: 45–49.

    Article  CAS  Google Scholar 

  • Lingaas F, Comstock KE, Kirkness EF, Sorensen A, Aarskaug T, Hitte C et al. (2003). A mutation in the canine BHD gene is associated with hereditary multifocal renal cystadenocarcinoma and nodular dermatofibrosis in the German Shepherd dog. Hum Mol Genet 12: 3043–3053.

    Article  CAS  Google Scholar 

  • Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP . (2005). Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179–193.

    Article  CAS  Google Scholar 

  • Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC . (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10: 151–162.

    Article  CAS  Google Scholar 

  • Mohr U, Dungworth DL, Capen CC, Carlton WW, Sundberg JP, Ward JM . (1996). Pathobiology of the Aging Mouse, vol. 1. International Life Sciences Institute: Washington, DC, 527pp.

    Google Scholar 

  • Murakami T, Sano F, Huang Y, Komiya A, Baba M, Osada Y et al. (2007). Identification and characterization of Birt–Hogg–Dube associated renal carcinoma. J Pathol 211: 524–531.

    Article  CAS  Google Scholar 

  • Nagy A, Zoubakov D, Stupar Z, Kovacs G . (2004). Lack of mutation of the folliculin gene in sporadic chromophobe renal cell carcinoma and renal oncocytoma. Int J Cancer 109: 472–475.

    Article  CAS  Google Scholar 

  • Nickerson ML, Warren MB, Toro JR, Matrosova V, Glenn G, Turner ML et al. (2002). Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt–Hogg–Dube syndrome. Cancer Cell 2: 157–164.

    Article  CAS  Google Scholar 

  • O’Callaghan FJK, Shiell AW, Osborne JP, Martyn CN . (1998). Prevalence of tuberous sclerosis estimated by capture-recapture analysis. Lancet 351: 1490.

    Article  Google Scholar 

  • Okimoto K, Kouchi M, Matsumoto I, Sakurai J, Kobayashi T, Hino O . (2004a). Natural history of the Nihon rat model of BHD. Curr Mol Med 4: 887–893.

    Article  CAS  Google Scholar 

  • Okimoto K, Sakurai J, Kobayashi T, Mitani H, Hirayama Y, Nickerson ML et al. (2004b). A germ-line insertion in the Birt–Hogg–Dube (BHD) gene gives rise to the Nihon rat model of inherited renal cancer. Proc Natl Acad Sci USA 101: 2023–2027.

    Article  CAS  Google Scholar 

  • Painter JN, Tapanainen H, Somer M, Tukiainen P, Aittomaki K . (2005). A 4-bp deletion in the Birt–Hogg–Dube gene (FLCN) causes dominantly inherited spontaneous pneumothorax. Am J Hum Genet 76: 522–527.

    Article  CAS  Google Scholar 

  • Pavlovich CP, Grubb III RL, Hurley K, Glenn GM, Toro J, Schmidt LS et al. (2005). Evaluation and management of renal tumors in the Birt–Hogg–Dube syndrome. J Urol 173: 1482–1486.

    Article  Google Scholar 

  • Pavlovich CP, Walther MM, Eyler RA, Hewitt SM, Zbar B, Linehan WM et al. (2002). Renal tumors in the Birt–Hogg–Dube syndrome. Am J Surg Pathol 26: 1542–1552.

    Article  Google Scholar 

  • Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP . (2007). Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol 177: 346–352.

    Article  Google Scholar 

  • Rolfe M, McLeod LE, Pratt PF, Proud CG . (2005). Activation of protein synthesis in cardiomyocytes by the hypertrophic agent phenylephrine requires the activation of ERK and involves phosphorylation of tuberous sclerosis complex 2 (TSC2). Biochem J 388: 973–984.

    Article  CAS  Google Scholar 

  • Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J . (2004). Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci USA 101: 13489–13494.

    Article  CAS  Google Scholar 

  • Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA . (2003). Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 5: 566–571.

    Article  CAS  Google Scholar 

  • Schmidt LS, Nickerson ML, Warren MB, Glenn GM, Toro JR, Merino MJ et al. (2005). Germline BHD-mutation spectrum and phenotype analysis of a large cohort of families with Birt–Hogg–Dube syndrome. Am J Hum Genet 76: 1023–1033.

    Article  CAS  Google Scholar 

  • Smolarek TA, Wessner LL, McCormack FX, Mylet JC, Menon AG, Henske EP . (1998). Evidence that lymphangiomyomatosis is caused by TSC2 mutations: chromosome 16p13 loss of heterozygosity in angiomyolipomas and lymph nodes from women with lymphangiomyomatosis. Am J Hum Genet 62: 810–815.

    Article  CAS  Google Scholar 

  • Stocker H, Radimerski T, Schindelholz B, Wittwer F, Belawat P, Daram P et al. (2003). Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 5: 559–565.

    Article  CAS  Google Scholar 

  • Stutman O . (1975). Immunodepression and malignancy. Adv Cancer Res 22: 261–422.

    Article  CAS  Google Scholar 

  • Takagi Y, Kobayashi T, Shiono M, Wang L, Piao X, Sun G et al. (2008). Interaction of folliculin (Birt–Hogg–Dube gene product) with a novel Fnip1-like (FnipL/Fnip2) protein. Oncogene 27: 5339–5347.

    Article  CAS  Google Scholar 

  • Tee AR, Anjum R, Blenis J . (2003a). Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin. J Biol Chem 278: 37288–37296.

    Article  CAS  Google Scholar 

  • Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J . (2003b). Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 13: 1259–1268.

    Article  CAS  Google Scholar 

  • Toro JR, Glenn G, Duray P, Darling T, Weirich G, Zbar B et al. (1999). Birt–Hogg–Dube syndrome: a novel marker of kidney neoplasia. Arch Dermatol 135: 1195–1202.

    CAS  PubMed  Google Scholar 

  • Urban T, Lazor R, Lacronique J, Murris M, Labrune S, Valeyre D et al. (1999). Pulmonary lymphangioleiomyomatosis. A study of 69 patients. Groupe d’Etudes et de Recherche sur les Maladies ‘Orphelines’ Pulmonaires (GERM‘O’P). Medicine (Baltimore) 78: 321–337.

    Article  CAS  Google Scholar 

  • van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277: 805–808.

    Article  CAS  Google Scholar 

  • van Slegtenhorst M, Khabibullin D, Hartman TR, Nicolas E, Kruger WD, Henske EP . (2007). The Birt–Hogg–Dube and tuberous sclerosis complex homologs have opposing roles in amino acid homeostasis in Schizosaccharomyces pombe. J Biol Chem 282: 24583–24590.

    Article  CAS  Google Scholar 

  • Vocke CD, Yang Y, Pavlovich CP, Schmidt LS, Nickerson ML, Torres-Cabala CA et al. (2005). High frequency of somatic frameshift BHD gene mutations in Birt–Hogg–Dube-associated renal tumors. J Natl Cancer Inst 97: 931–935.

    Article  CAS  Google Scholar 

  • Warren MB, Torres-Cabala CA, Turner ML, Merino MJ, Matrosova VY, Nickerson ML et al. (2004). Expression of Birt–Hogg–Dube gene mRNA in normal and neoplastic human tissues. Mod Pathol 17: 998–1011.

    Article  CAS  Google Scholar 

  • Yang Y, Padilla-Nash HM, Vira MA, Abu-Asab MS, Val D, Worrell R et al. (2008). The UOK 257 cell line: a novel model for studies of the human Birt–Hogg–Dube gene pathway. Cancer Genet Cytogenet 180: 100–109.

    Article  CAS  Google Scholar 

  • Zbar B, Alvord WG, Glenn G, Turner M, Pavlovich CP, Schmidt L et al. (2002). Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt–Hogg–Dube syndrome. Cancer Epidemiol Biomarkers Prev 11: 393–400.

    PubMed  Google Scholar 

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D . (2003). Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5: 578–581.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Victoria Robb for critical reading of this paper. We also thank Dr Laura Schmidt for the FLCN mAb, Dr Samuel Litwin for statistical analysis and the Fox Chase Cancer Center Lab Animal Facility for technical assistance with the development and maintenance of the Bhd mutant mice. This work was supported by NIH RO1 (DK51052). Dr Hartman was supported by NIH F32 (DK076443-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E P Henske.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartman, T., Nicolas, E., Klein-Szanto, A. et al. The role of the Birt–Hogg–Dubé protein in mTOR activation and renal tumorigenesis. Oncogene 28, 1594–1604 (2009). https://doi.org/10.1038/onc.2009.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.14

Keywords

This article is cited by

Search

Quick links