Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pro-proliferative FoxM1 is a target of p53-mediated repression

Abstract

The p53 tumor suppressor protein acts as a transcription factor to modulate cellular responses to a wide variety of stresses. In this study we show that p53 is required for the downregulation of FoxM1, an essential transcription factor that regulates many G2/M-specific genes and is overexpressed in a multitude of solid tumors. After DNA damage, p53 facilitates the repression of FoxM1 mRNA, which is accompanied by a decrease in FoxM1 protein levels. In cells with reduced p53 expression, FoxM1 is upregulated after DNA damage. Nutlin, a small-molecule activator of p53, suppresses FoxM1 levels in two cell lines in which DNA damage facilitates only mild repression. Mechanistically, p53-mediated inhibition of FoxM1 is partially p21 and retinoblastoma (Rb) family dependent, although in some cases p21-independent repression of FoxM1 was also observed. The importance of FoxM1 to cell fate was indicated by the observation that G2/M arrest follows FoxM1 ablation. Finally, our results indicate a potential contribution of p53-mediated repression of FoxM1 for maintenance of a stable G2 arrest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Badie C, Itzhaki JE, Sullivan MJ, Carpenter AJ, Porter AC . (2000). Repression of CDK1 and other genes with CDE and CHR promoter elements during DNA damage-induced G(2)/M arrest in human cells. Mol Cell Biol 20: 2358–2366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baptiste N, Friedlander P, Chen X, Prives C . (2002). The proline-rich domain of p53 is required for cooperation with anti-neoplastic agents to promote apoptosis of tumor cells. Oncogene 21: 9–21.

    Article  CAS  PubMed  Google Scholar 

  • Bhonde MR, Hanski ML, Budczies J, Cao M, Gillissen B, Moorthy D et al. (2006). DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: the lack of this suppression in p53MUT cells contributes to apoptosis. J Biol Chem 281: 8675–8685.

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Bose WE, Murphy MJ, Ehninger A, Offner S, Dubey C, Huang W et al. (2008). C-Myc and its target FoxM1 are critical downstream effectors of constitutive androstane receptor (CAR) mediated direct liver hyperplasia. Hepatology 48: 1302–1311.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Chan DW, Yu SY, Chiu PM, Yao KM, Liu VW, Cheung AN et al. (2008). Over-expression of FOXM1 transcription factor is associated with cervical cancer progression and pathogenesis. J Pathol 215: 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W et al. (2007). Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 7: 64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Ko LJ, Jayaraman L, Prives C . (1996). p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev 10: 2438–2451.

    Article  CAS  PubMed  Google Scholar 

  • Das S, Boswell SA, Aaronson SA, Lee SW . (2008). P53 promoter selection: choosing between life and death. Cell Cycle 7: 154–157.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. (2003). Genomic targets of the human c-Myc protein. Genes Dev 17: 1115–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM et al. (2008). Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol 10: 1076–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giono LE, Manfredi JJ . (2006). The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209: 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J et al. (2008). Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell 134: 62–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottifredi V, Karni-Schmidt O, Shieh SS, Prives C . (2001). p53 down-regulates CHK1 through p21 and the retinoblastoma protein. Mol Cell Biol 21: 1066–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gridasova AA, Henry RW . (2005). The p53 tumor suppressor protein represses human snRNA gene transcription by RNA polymerases II and III independently of sequence-specific DNA binding. Mol Cell Biol 25: 3247–3260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gusarova GA, Wang IC, Major ML, Kalinichenko VV, Ackerson T, Petrovic V et al. (2007). A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J Clin Invest 117: 99–111.

    Article  CAS  PubMed  Google Scholar 

  • He X, He L, Hannon GJ . (2007). The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res 67: 11099–11101.

    Article  CAS  PubMed  Google Scholar 

  • Hendzel MJ, Wei Y, Mancini MA, Van Hooser A, Ranalli T, Brinkley BR et al. (1997). Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106: 348–360.

    Article  CAS  PubMed  Google Scholar 

  • Ho J, Benchimol S . (2003). Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 10: 404–408.

    Article  CAS  PubMed  Google Scholar 

  • Ho JS, Ma W, Mao DY, Benchimol S . (2005). p53-dependent transcriptional repression of c-myc is required for G1 cell cycle arrest. Mol Cell Biol 25: 7423–7431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M . (2002). Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 277: 3247–3257.

    Article  CAS  PubMed  Google Scholar 

  • Imbriano C, Gurtner A, Cocchiarella F, Di Agostino S, Basile V, Gostissa M et al. (2005). Direct p53 transcriptional repression: in vivo analysis of CCAAT-containing G2/M promoters. Mol Cell Biol 25: 3737–3751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Incassati A, Patel D, McCance DJ . (2006). Induction of tetraploidy through loss of p53 and upregulation of Plk1 by human papillomavirus type-16 E6. Oncogene 25: 2444–2451.

    Article  CAS  PubMed  Google Scholar 

  • Innocente SA, Lee JM . (2005). p53 is a NF-Y- and p21-independent, Sp1-dependent repressor of cyclin B1 transcription. FEBS Lett 579: 1001–1007.

    Article  CAS  PubMed  Google Scholar 

  • Iwakuma T, Lozano G . (2003). MDM2, an introduction. Mol Cancer Res 1: 993–1000.

    CAS  PubMed  Google Scholar 

  • Jackson JG, Pereira-Smith OM . (2006). Primary and compensatory roles for RB family members at cell cycle gene promoters that are deacetylated and downregulated in doxorubicin-induced senescence of breast cancer cells. Mol Cell Biol 26: 2501–2510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MW, Agarwal MK, Yang J, Bruss P, Uchiumi T, Agarwal ML et al. (2005). p130/p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2. J Cell Sci 118: 1821–1832.

    Article  CAS  PubMed  Google Scholar 

  • Kalin TV, Wang IC, Ackerson TJ, Major ML, Detrisac CJ, Kalinichenko VV et al. (2006). Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res 66: 1712–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinichenko VV, Major ML, Wang X, Petrovic V, Kuechle J, Yoder HM et al. (2004). Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev 18: 830–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan K, Amariglio N, Rechavi G, Jakob-Hirsch J, Kela I, Kaminski N et al. (2001). DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene 20: 2225–2234.

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW . (1991). Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51: 6304–6311.

    CAS  PubMed  Google Scholar 

  • Kho PS, Wang Z, Zhuang L, Li Y, Chew JL, Ng HH et al. (2004). p53-regulated transcriptional program associated with genotoxic stress-induced apoptosis. J Biol Chem 279: 21183–21192.

    Article  CAS  PubMed  Google Scholar 

  • Kim IM, Ackerson T, Ramakrishna S, Tretiakova M, Wang IC, Kalin TV et al. (2006). The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res 66: 2153–2161.

    Article  CAS  PubMed  Google Scholar 

  • Kitaura H, Shinshi M, Uchikoshi Y, Ono T, Iguchi-Ariga SM, Ariga H . (2000). Reciprocal regulation via protein-protein interaction between c-Myc and p21(cip1/waf1/sdi1) in DNA replication and transcription. J Biol Chem 275: 10477–10483.

    Article  CAS  PubMed  Google Scholar 

  • Krause K, Haugwitz U, Wasner M, Wiedmann M, Mossner J, Engeland K . (2001). Expression of the cell cycle phosphatase cdc25C is down-regulated by the tumor suppressor protein p53 but not by p73. Biochem Biophys Res Commun 284: 743–750.

    Article  CAS  PubMed  Google Scholar 

  • Krause K, Wasner M, Reinhard W, Haugwitz U, Dohna CL, Mossner J et al. (2000). The tumour suppressor protein p53 can repress transcription of cyclin B. Nucleic Acids Res 28: 4410–4418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupczak-Hollis K, Wang X, Kalinichenko VV, Gusarova GA, Wang IC, Dennewitz MB et al. (2004). The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis. Dev Biol 276: 74–88.

    Article  CAS  PubMed  Google Scholar 

  • Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A et al. (2005). FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 7: 126–136.

    Article  CAS  PubMed  Google Scholar 

  • Laoukili J, Stahl M, Medema RH . (2007). FoxM1: at the crossroads of ageing and cancer. Biochim Biophys Acta 1775: 92–102.

    CAS  PubMed  Google Scholar 

  • Laptenko O, Prives C . (2006). Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13: 951–961.

    Article  CAS  PubMed  Google Scholar 

  • Li SK, Smith DK, Leung WY, Cheung AM, Lam EW, Dimri GP et al. (2008). FoxM1c counteracts oxidative stress-induced senescence and stimulates Bmi-1 expression. J Biol Chem 283: 16545–16553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linhart C, Elkon R, Shiloh Y, Shamir R . (2005). Deciphering transcriptional regulatory elements that encode specific cell cycle phasing by comparative genomics analysis. Cell Cycle 4: 1788–1797.

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF et al. (2006). FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 66: 3593–3602.

    Article  CAS  PubMed  Google Scholar 

  • Lohr K, Moritz C, Contente A, Dobbelstein M . (2003). p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 278: 32507–32516.

    Article  PubMed  Google Scholar 

  • Mirza A, McGuirk M, Hockenberry TN, Wu Q, Ashar H, Black S et al. (2002). Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 21: 2613–2622.

    Article  CAS  PubMed  Google Scholar 

  • Mirza A, Wu Q, Wang L, McClanahan T, Bishop WR, Gheyas F et al. (2003). Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Oncogene 22: 3645–3654.

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Costa RH, Lau LF, Tyner AL, Raychaudhuri P . (2008). Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase. Mol Cell Biol 28: 5162–5171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penzo M, Massa PE, Olivotto E, Bianchi F, Borzi RM, Hanidu A et al. (2009). Sustained NF-kappaB activation produces a short-term cell proliferation block in conjunction with repressing effectors of cell cycle progression controlled by E2F or FoxM1. J Cell Physiol 218: 215–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. (2007). Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28: 622–629.

    Article  CAS  PubMed  Google Scholar 

  • Pilarsky C, Wenzig M, Specht T, Saeger HD, Grutzmann R . (2004). Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia 6: 744–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raj D, Liu T, Samadashwily G, Li F, Grossman D . (2008). Survivin repression by p53, Rb and E2F2 in normal human melanocytes. Carcinogenesis 29: 194–201.

    Article  CAS  PubMed  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    Article  CAS  PubMed  Google Scholar 

  • Robinson M, Jiang P, Cui J, Li J, Wang Y, Swaroop M et al. (2003). Global genechip profiling to identify genes responsive to p53-induced growth arrest and apoptosis in human lung carcinoma cells. Cancer Biol Ther 2: 406–415.

    Article  CAS  PubMed  Google Scholar 

  • Sax JK, Stoddard A, Murphy ME, Chodosh L, El-Deiry WS . (2003). Microarray expression profiling of p53-dependent transcriptional changes in an immortalized mouse embryo fibroblast cell line. Cancer Biol Ther 2: 416–430.

    Article  CAS  PubMed  Google Scholar 

  • Shats I, Milyavsky M, Tang X, Stambolsky P, Erez N, Brosh R et al. (2004). p53-dependent down-regulation of telomerase is mediated by p21waf1. J Biol Chem 279: 50976–50985.

    Article  CAS  PubMed  Google Scholar 

  • Spitkovsky D, Schulze A, Boye B, Jansen-Durr P . (1997). Down-regulation of cyclin A gene expression upon genotoxic stress correlates with reduced binding of free E2F to the promoter. Cell Growth Differ 8: 699–710.

    CAS  PubMed  Google Scholar 

  • Spurgers KB, Gold DL, Coombes KR, Bohnenstiehl NL, Mullins B, Meyn RE et al. (2006). Identification of cell cycle regulatory genes as principal targets of p53-mediated transcriptional repression. J Biol Chem 281: 25134–25142.

    Article  CAS  PubMed  Google Scholar 

  • St Clair S, Giono L, Varmeh-Ziaie S, Resnick-Silverman L, Liu WJ, Padi A et al. (2004). DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter. Mol Cell 16: 725–736.

    Article  PubMed  Google Scholar 

  • St Clair S, Manfredi JJ . (2006). The dual specificity phosphatase Cdc25C is a direct target for transcriptional repression by the tumor suppressor p53. Cell Cycle 5: 709–713.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y . (2006). p53 and its downstream proteins as molecular targets of cancer. Mol Carcinog 45: 409–415.

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Raychaudhuri P, Costa RH . (2007). Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol Cell Biol 27: 1007–1016.

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Schonthal AH, Galante J, Stark GR . (2001). p130/E2F4 binds to and represses the cdc2 promoter in response to p53. J Biol Chem 276: 1998–2006.

    Article  CAS  PubMed  Google Scholar 

  • Taylor WR, Stark GR . (2001). Regulation of the G2/M transition by p53. Oncogene 20: 1803–1815.

    Article  CAS  PubMed  Google Scholar 

  • Teh MT, Wong ST, Neill GW, Ghali LR, Philpott MP, Quinn AG . (2002). FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res 62: 4773–4780.

    CAS  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  • Vousden KH, Prives C . (2009). Blinded by the light: the growing complexity of p53. Cell 137: 413–431.

    Article  CAS  PubMed  Google Scholar 

  • Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ et al. (2005). Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 25: 10875–10894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Wu Q, Qiu P, Mirza A, McGuirk M, Kirschmeier P et al. (2001). Analyses of p53 target genes in the human genome by bioinformatic and microarray approaches. J Biol Chem 276: 43604–43610.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Kiyokawa H, Dennewitz MB, Costa RH . (2002). The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci USA 99: 16881–16886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH . (2007). Down-regulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res 67: 8293–8300.

    Article  CAS  PubMed  Google Scholar 

  • Weymann A, Hartman E, Gazit V, Wang C, Glauber M, Turmelle Y et al. (2009). p21 is required for dextrose-mediated inhibition of mouse liver regeneration. Hepatology 50: 207–215.

    Article  CAS  PubMed  Google Scholar 

  • Wonsey DR, Follettie MT . (2005). Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 65: 5181–5189.

    Article  CAS  PubMed  Google Scholar 

  • Xia LM, Huang WJ, Wang B, Liu M, Zhang Q, Yan W et al. (2008). Transcriptional up-regulation of FoxM1 in response to hypoxia is mediated by HIF-1. J Cell Biochem 106: 247–256.

    Article  Google Scholar 

  • Yun J, Chae HD, Choi TS, Kim EH, Bang YJ, Chung J et al. (2003). Cdk2-dependent phosphorylation of the NF-Y transcription factor and its involvement in the p53-p21 signaling pathway. J Biol Chem 278: 36966–36972.

    Article  CAS  PubMed  Google Scholar 

  • Yun J, Chae HD, Choy HE, Chung J, Yoo HS, Han MH et al. (1999). p53 negatively regulates cdc2 transcription via the CCAAT-binding NF-Y transcription factor. J Biol Chem 274: 29677–29682.

    Article  CAS  PubMed  Google Scholar 

  • Zeng J, Wang L, Li Q, Li W, Bjorkholm M, Jia J et al. (2009). FoxM1 is up-regulated in gastric cancer and its inhibition leads to cellular senescence, partially dependent on p27(kip1). J Pathol 218: 419–427.

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zhang S, Jiang J, Chen X . (2000). Definition of the p53 functional domains necessary for inducing apoptosis. J Biol Chem 275: 39927–39934.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ella Freulich provided expert technical assistance. Members of the Prives laboratory are thanked for their support and encouragement. This work was supported by the National Institutes of Health Grant CA77742.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Prives.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barsotti, A., Prives, C. Pro-proliferative FoxM1 is a target of p53-mediated repression. Oncogene 28, 4295–4305 (2009). https://doi.org/10.1038/onc.2009.282

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.282

Keywords

This article is cited by

Search

Quick links