Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pbx1 is a downstream target of Evi-1 in hematopoietic stem/progenitors and leukemic cells

Abstract

Ecotropic viral integration site-1 (Evi-1) is a nuclear transcription factor, which is essential for the proliferation/maintenance of hematopoietic stem cells (HSCs). Aberrant expression of Evi-1 has been frequently found in myeloid leukemia, and is associated with a poor patient survival. Recently, we reported candidate target genes of Evi-1 shared in HSCs and leukemic cells using gene expression profiling analysis. In this study, we identified Pbx1, a proto-oncogene in hematopoietic malignancy, as a target gene of Evi-1. Overexpression of Evi-1 increased Pbx1 expression in hematopoietic stem/progenitor cells. An analysis of the Pbx1 promoter region revealed that Evi-1 upregulates Pbx1 transcription. Furthermore, reduction of Pbx1 levels through RNAi-mediated knockdown significantly inhibited Evi-1-induced transformation. In contrast, knockdown of Pbx1 did not impair bone marrow transformation by E2A/HLF or AML1/ETO, suggesting that Pbx1 is specifically required for the maintenance of bone marrow transformation mediated by Evi-1. These results indicate that Pbx1 is a target gene of Evi-1 involved in Evi-1-mediated leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, Valk PJ, van der Poel-van de Luytgaarde S, Hack R et al. (2003). High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 101: 837–845.

    Article  PubMed  Google Scholar 

  • Delwel R, Funabiki T, Kreider BL, Morishita K, Ihle JN . (1993). Four of the seven zinc fingers of the Evi-1 myeloid-transforming gene are required for sequence-specific binding to GA(C/T)AAGA(T/C)AAGATAA. Mol Cell Biol 13: 4291–4300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiMartino JF, Selleri L, Traver D, Firpo MT, Rhee J, Warnke R et al. (2001). The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood 98: 618–626.

    Article  CAS  PubMed  Google Scholar 

  • Fears S, Mathieu C, Zeleznik-Le N, Huang S, Rowley JD, Nucifora G . (1996). Intergenic splicing of MDS1 and EVI1 occurs in normal tissues as well as in myeloid leukemia and produces a new member of the PR domain family. Proc Natl Acad Sci USA 93: 1642–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ficara F, Murphy MJ, Lin M, Cleary ML . (2008). Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2: 484–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funabiki T, Kreider BL, Ihle JN . (1994). The carboxyl domain of zinc fingers of the Evi-1 myeloid transforming gene binds a consensus sequence of GAAGATGAG. Oncogene 9: 1575–1581.

    CAS  PubMed  Google Scholar 

  • Goyama S, Kurokawa M . (2009). Pathogenetic significance of ecotropic viral integration site-1 in hematological malignancies. Cancer Sci 100: 990–995.

    Article  CAS  PubMed  Google Scholar 

  • Goyama S, Yamamoto G, Shimabe M, Sato T, Ichikawa M, Ogawa S et al. (2008). Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 3: 207–220.

    Article  CAS  PubMed  Google Scholar 

  • Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H . (2001). The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 97: 2815–2822.

    Article  CAS  PubMed  Google Scholar 

  • Jin G, Yamazaki Y, Takuwa M, Takahara T, Kaneko K, Kuwata T et al. (2007). Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood 109: 3998–4005.

    Article  CAS  PubMed  Google Scholar 

  • Kamps MP, Look AT, Baltimore D . (1991). The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev 5: 358–368.

    Article  CAS  PubMed  Google Scholar 

  • Kamps MP, Murre C, Sun XH, Baltimore D . (1990). A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60: 547–555.

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Selleri L, Lee JS, Zhang AY, Gu X, Jacobs Y et al. (2002). Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat Genet 30: 430–435.

    Article  CAS  PubMed  Google Scholar 

  • Knoepfler PS, Sykes DB, Pasillas M, Kamps MP . (2001). HoxB8 requires its Pbx-interaction motif to block differentiation of primary myeloid progenitors and of most cell line models of myeloid differentiation. Oncogene 20: 5440–5448.

    Article  CAS  PubMed  Google Scholar 

  • Krosl J, Baban S, Krosl G, Rozenfeld S, Largman C, Sauvageau G . (1998). Cellular proliferation and transformation induced by HOXB4 and HOXB3 proteins involves cooperation with PBX1. Oncogene 16: 3403–3412.

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa M, Mitani K, Irie K, Matsuyama T, Takahashi T, Chiba S et al. (1998). The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 394: 92–96.

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa M, Mitani K, Yamagata T, Takahashi T, Izutsu K, Ogawa S et al. (2000). The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J 19: 2958–2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laricchia-Robbio L, Nucifora G . (2008). Significant increase of self-renewal in hematopoietic cells after forced expression of EVI1. Blood Cells Mol Dis 40: 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Laricchia-Robbio L, Premanand K, Rinaldi CR, Nucifora G . (2009). EVI1 Impairs myelopoiesis by deregulation of PU.1 function. Cancer Res 69: 1633–1642.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence HJ, Sauvageau G, Humphries RK, Largman C . (1996). The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 14: 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Lee TI, Johnstone SE, Young RA . (2006). Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1: 729–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim JH, Booker AB, Luo T, Williams T, Furuta Y, Lagutin O et al. (2005). AP-2alpha selectively regulates fragile X mental retardation-1 gene transcription during embryonic development. Hum Mol Genet 14: 2027–2034.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen L, Ko TC, Fields AP, Thompson EA . (2006). Evi1 is a survival factor which conveys resistance to both TGFbeta- and taxol-mediated cell death via PI3K/AKT. Oncogene 25: 3565–3575.

    Article  CAS  PubMed  Google Scholar 

  • Lugthart S, van Drunen E, van Norden Y, van Hoven A, Erpelinck CA, Valk PJ et al. (2008). High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 111: 4329–4337.

    Article  CAS  PubMed  Google Scholar 

  • Manley NR, Selleri L, Brendolan A, Gordon J, Cleary ML . (2004). Abnormalities of caudal pharyngeal pouch development in Pbx1 knockout mice mimic loss of Hox3 paralogs. Dev Biol 276: 301–312.

    Article  CAS  PubMed  Google Scholar 

  • Mann RS . (1995). The specificity of homeotic gene function. Bioessays 17: 855–863.

    Article  CAS  PubMed  Google Scholar 

  • Meyers S, Downing JR, Hiebert SW . (1993). Identification of AML-1 and the (8;21) translocation protein (AML-1/ETO) as sequence-specific DNA-binding proteins: the runt homology domain is required for DNA binding and protein-protein interactions. Mol Cell Biol 13: 6336–6345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitta E, Izutsu K, Yamaguchi Y, Imai Y, Ogawa S, Chiba S et al. (2005). Oligomerization of Evi-1 regulated by the PR domain contributes to recruitment of corepressor CtBP. Oncogene 24: 6165–6173.

    Article  CAS  PubMed  Google Scholar 

  • Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD et al. (1990). Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60: 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Kurokawa M, Tanaka T, Mitani K, Inazawa J, Hangaishi A et al. (1996). Structurally altered Evi-1 protein generated in the 3q21q26 syndrome. Oncogene 13: 183–191.

    CAS  PubMed  Google Scholar 

  • Park JT, Shih Ie M, Wang TL . (2008). Identification of Pbx1, a potential oncogene, as a Notch3 target gene in ovarian cancer. Cancer Res 68: 8852–8860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins AS, Fishel R, Jenkins NA, Copeland NG . (1991). Evi-1, a murine zinc finger proto-oncogene, encodes a sequence-specific DNA-binding protein. Mol Cell Biol 11: 2665–2674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pintado T, Ferro MT, San Roman C, Mayayo M, Larana JG . (1985). Clinical correlations of the 3q21;q26 cytogenetic anomaly. A leukemic or myelodysplastic syndrome with preserved or increased platelet production and lack of response to cytotoxic drug therapy. Cancer 55: 535–541.

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Tomita Y, Zhang B, Nakamichi I, Morii E, Aozasa K . (2007). Pre-B-cell leukemia transcription factor 1 regulates expression of valosin-containing protein, a gene involved in cancer growth. Am J Pathol 170: 152–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Goyama S, Nitta E, Takeshita M, Yoshimi M, Nakagawa M et al. (2008). Evi-1 promotes para-aortic splanchnopleural hematopoiesis through up-regulation of GATA-2 and repression of TGF-b signaling. Cancer Sci 99: 1407–1413.

    Article  CAS  PubMed  Google Scholar 

  • Schnabel CA, Godin RE, Cleary ML . (2003). Pbx1 regulates nephrogenesis and ureteric branching in the developing kidney. Dev Biol 254: 262–276.

    Article  CAS  PubMed  Google Scholar 

  • Schnabel CA, Jacobs Y, Cleary ML . (2000). HoxA9-mediated immortalization of myeloid progenitors requires functional interactions with TALE cofactors Pbx and Meis. Oncogene 19: 608–616.

    Article  CAS  PubMed  Google Scholar 

  • Selleri L, Depew MJ, Jacobs Y, Chanda SK, Tsang KY, Cheah KS et al. (2001). Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development 128: 3543–3557.

    CAS  PubMed  Google Scholar 

  • Shiraishi K, Yamasaki K, Nanba D, Inoue H, Hanakawa Y, Shirakata Y et al. (2007). Pre-B-cell leukemia transcription factor 1 is a major target of promyelocytic leukemia zinc-finger-mediated melanoma cell growth suppression. Oncogene 26: 339–348.

    Article  CAS  PubMed  Google Scholar 

  • Smith KS, Rhee JW, Cleary ML . (2002). Transformation of bone marrow B-cell progenitors by E2a-Hlf requires coexpression of Bcl-2. Mol Cell Biol 22: 7678–7687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzukawa K, Parganas E, Gajjar A, Abe T, Takahashi S, Tani K et al. (1994). Identification of a breakpoint cluster region 3′ of the ribophorin I gene at 3q21 associated with the transcriptional activation of the EVI1 gene in acute myelogenous leukemias with inv(3)(q21q26). Blood 84: 2681–2688.

    CAS  PubMed  Google Scholar 

  • Takeshita M, Ichikawa M, Nitta E, Goyama S, Asai T, Ogawa S et al. (2008). AML1-Evi-1 specifically transforms hematopoietic stem cells through fusion of the entire Evi-1 sequence to AML1. Leukemia 22: 1241–1249.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Nishida J, Mitani K, Ogawa S, Yazaki Y, Hirai H . (1994). Evi-1 raises AP-1 activity and stimulates c-fos promoter transactivation with dependence on the second zinc finger domain. J Biol Chem 269: 24020–24026.

    CAS  PubMed  Google Scholar 

  • Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe-Okochi N, Kitaura J, Ono R, Harada H, Harada Y, Komeno Y et al. (2008). AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood 111: 4297–4308.

    Article  CAS  PubMed  Google Scholar 

  • Yaron Y, McAdara JK, Lynch M, Hughes E, Gasson JC . (2001). Identification of novel functional regions important for the activity of HOXB7 in mammalian cells. J Immunol 166: 5058–5067.

    Article  CAS  PubMed  Google Scholar 

  • Yatsula B, Lin S, Read AJ, Poholek A, Yates K, Yue D et al. (2005). Identification of binding sites of EVI1 in mammalian cells. J Biol Chem 280: 30712–30722.

    Article  CAS  PubMed  Google Scholar 

  • Yuasa H, Oike Y, Iwama A, Nishikata I, Sugiyama D, Perkins A et al. (2005). Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J 24: 1976–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T Kitamura for Plat-E packaging cells and pMYs-IG retrovirus vector, H Nakauchi and M Onodera for pGCDNsam-eGFP retroviral vector, T Inaba for E2A/HLF cDNA, SW Hiebert for AML1/ETO cDNA, D Bohmann for c-Jun cDNA, Y Shimamura for expert technical assistance, and KYOWA KIRIN for cytokines. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, and by Health and Labour Sciences Research grants from Ministry of Health, Labour and Welfare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Kurokawa.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimabe, M., Goyama, S., Watanabe-Okochi, N. et al. Pbx1 is a downstream target of Evi-1 in hematopoietic stem/progenitors and leukemic cells. Oncogene 28, 4364–4374 (2009). https://doi.org/10.1038/onc.2009.288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.288

Keywords

This article is cited by

Search

Quick links