Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Downregulation of E-cadherin is an essential event in activating β-catenin/Tcf-dependent transcription and expression of its target genes in Pdcd4 knockdown cells

Abstract

We reported earlier that knockdown of tumor suppressor Pdcd4 (programed cell death 4) downregulates E-cadherin expression and activates β-catenin/Tcf (T-cell factor)-dependent transcription in colon tumor cells. However, the underlying mechanism of these observations remains unknown. In this study, we showed that knockdown of Pdcd4 downregulates E-cadherin expression through elevated protein level of Snail. Over-expression of Pdcd4 upregulates E-cadherin expression and inhibits β-catenin/Tcf-dependent transcription. We then showed that knockdown of E-cadherin activates β-catenin/Tcf-dependent transcription. Conversely, over-expression of E-cadherin in Pdcd4 knockdown cells inhibits β-catenin/Tcf-dependent transcription. In addition, Pdcd4 knockdown stimulates urokinase-type plasminogen activator receptor (u-PAR) and c-Myc expression, whereas u-PAR and c-Myc expression can be reversed by over-expressing E-cadherin in Pdcd4 knockdown cells. Using chromatin immunoprecipitation, we showed that β-catenin/Tcf4 directly binds to the promoters of u-PAR and c-myc in Pdcd4 knockdown cells. Futhermore, knockdown of u-PAR or c-Myc inhibits invasion in Pdcd4 knockdown cells, suggesting that both u-PAR and c-Myc contribute to invasion induced by Pdcd4 knockdown. Taken together, our data showed that elevated Snail expression by Pdcd4 knockdown leads to downregulation of E-cadherin resulting in activating β-catenin/Tcf-dependent transcription and stimulating the expression of c-Myc and u-PAR, thus providing molecular explanation of how Pdcd4 suppresses tumor invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahmed N, Oliva K, Wang Y, Quinn M, Rice G . (2003). Downregulation of urokinase plasminogen activator receptor expression inhibits Erk signalling with concomitant suppression of invasiveness due to loss of uPAR-beta1 integrin complex in colon cancer cells. Br J Cancer 89: 374–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier W, Behrens J . (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta 1198: 11–26.

    CAS  PubMed  Google Scholar 

  • Bitomsky N, Wethkamp N, Marikkannu R, Klempnauer KH . (2008). siRNA-mediated knockdown of Pdcd4 expression causes upregulation of p21(Waf1/Cip1) expression. Oncogene 27: 4820–4829.

    Article  CAS  PubMed  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Cavallaro U, Christofori G . (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4: 118–132.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs SY, Ougolkov AV, Spiegelman VS, Minamoto T . (2005). Oncogenic beta-catenin signaling networks in colorectal cancer. Cell Cycle 4: 1522–1539.

    Article  CAS  PubMed  Google Scholar 

  • Gregorieff A, Clevers H . (2005). Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19: 877–890.

    Article  CAS  PubMed  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Hilliard A, Hilliard B, Zheng SJ, Sun H, Miwa T, Song W et al (2006). Translational regulation of autoimmune inflammation and lymphoma genesis by programmed cell death 4. J Immunol 177: 8095–8102.

    Article  CAS  PubMed  Google Scholar 

  • Jansen AP, Camalier CE, Colburn NH . (2005). Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Cancer Res 65: 6034–6041.

    Article  CAS  PubMed  Google Scholar 

  • Kariko K, Kuo A, Boyd D, Okada SS, Cines DB, Barnathan ES . (1993). Overexpression of urokinase receptor increases matrix invasion without altering cell migration in a human osteosarcoma cell line. Cancer Res 53: 3109–3117.

    CAS  PubMed  Google Scholar 

  • Kemler R . (1992). Classical cadherins. Semin Cell Biol 3: 149–155.

    Article  CAS  PubMed  Google Scholar 

  • Laufs S, Schumacher J, Allgayer H . (2006). Urokinase-receptor (u-PAR): an essential player in multiple games of cancer: a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle 5: 1760–1771.

    Article  CAS  PubMed  Google Scholar 

  • Leupold JH, Yang HS, Colburn NH, Asangani I, Post S, Allgayer H . (2007). Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene 26: 4550–4562.

    Article  CAS  PubMed  Google Scholar 

  • Liu YN, Lee WW, Wang CY, Chao TH, Chen Y, Chen JH . (2005). Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene 24: 8277–8290.

    Article  CAS  PubMed  Google Scholar 

  • Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M et al (1999). Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 96: 1603–1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memarzadeh S, Kozak KR, Chang L, Natarajan S, Shintaku P, Reddy ST et al (2002). Urokinase plasminogen activator receptor: prognostic biomarker for endometrial cancer. Proc Natl Acad Sci USA 99: 10647–10652.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyaki M, Konishi M, Kikuchi-Yanoshita R, Enomoto M, Igari T, Tanaka K et al (1994). Characteristics of somatic mutation of the adenomatous polyposis coli gene in colorectal tumors. Cancer Res 54: 3011–3020.

    CAS  PubMed  Google Scholar 

  • Mudduluru G, Medved F, Grobholz R, Jost C, Gruber A, Leupold JH et al (2007). Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer 110: 1697–1707.

    Article  CAS  PubMed  Google Scholar 

  • Nestl A, Von Stein OD, Zatloukal K, Thies WG, Herrlich P, Hofmann M et al (2001). Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res 61: 1569–1577.

    CAS  PubMed  Google Scholar 

  • O'Connell BC, Cheung AF, Simkevich CP, Tam W, Ren X, Mateyak MK et al (2003). A large scale genetic analysis of c-Myc-regulated gene expression patterns. J Biol Chem 278: 12563–12573.

    Article  CAS  PubMed  Google Scholar 

  • Olmeda D, Jorda M, Peinado H, Fabra A, Cano A . (2007). Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 26: 1862–1874.

    Article  CAS  PubMed  Google Scholar 

  • Ozanne BW, McGarry L, Spence HJ, Johnston I, Winnie J, Meagher L et al (2000). Transcriptional regulation of cell invasion: AP-1 regulation of a multigenic invasion programme. Eur J Cancer 36: 1640–1648.

    Article  CAS  PubMed  Google Scholar 

  • Ozpolat B, Akar U, Steiner M, Zorrilla-Calancha I, Tirado-Gomez M, Colburn N et al (2007). Programmed cell death-4 tumor suppressor protein contributes to retinoic acid-induced terminal granulocytic differentiation of human myeloid leukemia cells. Mol Cancer Res 5: 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R, Bosserhoff AK . (2001). Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 276: 24661–24666.

    Article  CAS  PubMed  Google Scholar 

  • Schmid T, Jansen AP, Baker AR, Hegamyer G, Hagan JP, Colburn NH . (2008). Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion. Cancer Res 68: 1254–1260.

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Myint T, Goh HS . (1993). Over-expression of the c-myc proto-oncogene in colorectal carcinoma. Br J Cancer 68: 407–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogelstein B, Kinzler KW . (2004). Cancer genes and the pathways they control. Nat Med 10: 789–799.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Sun Z, Yang HS . (2008). Downregulation of tumor suppressor Pdcd4 promotes invasion and activates both beta-catenin/Tcf and AP-1-dependent transcription in colon carcinoma cells. Oncogene 27: 1527–1535.

    Article  CAS  PubMed  Google Scholar 

  • Yang HS, Cho MH, Zakowicz H, Hegamyer G, Sonenberg N, Colburn NH . (2004a). A novel function of the MA-3 domains in transformation and translation suppressor Pdcd4 is essential for its binding to eukaryotic translation initiation factor 4A. Mol Cell Biol 24: 3894–3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HS, Jansen AP, Komar AA, Zheng X, Merrick WC, Costes S et al (2003a). The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 23: 26–37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang HS, Jansen AP, Nair R, Shibahara K, Verma AK, Cmarik JL et al (2001). A novel transformation suppressor, Pdcd4, inhibits AP-1 transactivation but not NF-kappaB or ODC transactivation. Oncogene 20: 669–676.

    Article  CAS  PubMed  Google Scholar 

  • Yang HS, Knies JL, Stark C, Colburn NH . (2003b). Pdcd4 suppresses tumor phenotype in JB6 cells by inhibiting AP-1 transactivation. Oncogene 22: 3712–3720.

    Article  CAS  PubMed  Google Scholar 

  • Yang HS, Matthews CP, Clair T, Wang Q, Baker AR, Li CC et al (2006). Tumorigenesis suppressor Pdcd4 down-regulates MAP4K1 expression to suppress colon carcinoma cell invasion. Mol Cell Biol 26: 1297–1306.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al (2004b). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Ji Hshiung Chen (Tzu Chi University, Taiwan) for kindly providing E-cadherin promoter and Dr Xiaoling Guo for technical support. This work was supported by NCI Grant R01CA129015, ACS Institutional Research Grant IRG-85-001-19, and NCRR CORBE pilot grant P20RR020171.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H -S Yang.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Sun, ZX., Allgayer, H. et al. Downregulation of E-cadherin is an essential event in activating β-catenin/Tcf-dependent transcription and expression of its target genes in Pdcd4 knockdown cells. Oncogene 29, 128–138 (2010). https://doi.org/10.1038/onc.2009.302

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.302

Keywords

This article is cited by

Search

Quick links