Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Wnt signaling activation and mammary gland hyperplasia in MMTV–LRP6 transgenic mice: implication for breast cancer tumorigenesis

Abstract

Although Wnt signaling activation is frequently observed in human breast cancer, mutations in genes encoding intracellular components of the Wnt signaling pathway are rare. We found that the expression of Wnt signaling co-receptor, LRP6, is upregulated in a subset of human breast cancer tissues and cell lines. To examine whether the overexpression of LRP6 in mammary epithelial cells is sufficient to activate Wnt signaling and promote cell proliferation, we generated transgenic mice overexpressing LRP6 in mammary epithelial cells driven by the mouse mammary tumor virus (MMTV) promoter. We found that mammary glands from MMTV–LRP6 mice exhibit significant Wnt activation evidenced by the translocation of β-catenin from membrane to cytoplasmic/nuclear fractions. The expression of several Wnt target genes including Axin2, Cyclin D1 and c-Myc was also increased in MMTV–LRP6 mice. More importantly, mammary glands from virgin MMTV–LRP6 mice exhibit significant hyperplasia, a precursor to breast cancer, when compared with wild-type littermate controls. Several matrix metalloproteinases are upregulated in MMTV–LRP6 mice that could contribute to the hyperplasia phenotype. Our results suggest that Wnt signaling activation at the cell-surface receptor level can contribute to breast cancer tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Amundadottir LT, Merlino G, Dickson RB . (1996). Transgenic mouse models of breast cancer. Breast Cancer Res Treat 39: 119–135.

    Article  CAS  PubMed  Google Scholar 

  • Bafico A, Gazit A, Wu-Morgan SS, Yaniv A, Aaronson SA . (1998). Characterization of Wnt-1 and Wnt-2 induced growth alterations and signaling pathways in NIH3T3 fibroblasts. Oncogene 16: 2819–2825.

    Article  CAS  PubMed  Google Scholar 

  • Bafico A, Liu G, Goldin L, Harris V, Aaronson SA . (2004). An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6: 497–506.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Lukas J, Müller H, Lützhøft D, Strauss M, Bartek J . (1994). Cyclin D1 protein expression and function in human breast cancer. Int J Cancer 57: 353–361.

    Article  CAS  PubMed  Google Scholar 

  • Blavier L, Lazaryev A, Dorey F, Shackleford GM, DeClerck YA . (2006). Matrix metalloproteinases play an active role in Wnt1-induced mammary tumorigenesis. Cancer Res 66: 2691–2699.

    Article  CAS  PubMed  Google Scholar 

  • Bu G, Geuze HJ, Strous GJ, Schwartz AL . (1995). 39-kDa receptor-associated protein is an ER resident protein and molecular chaperone for LDL receptor-related protein. EMBO J 14: 2269–2280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ et al. (2000). The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19: 968–988.

    Article  CAS  PubMed  Google Scholar 

  • Chenard MP, Lutz Y, Mechine-Neuville A, Stoll I, Bellocq JP, Rio MC et al. (1999). Presence of high levels of MT1-MMP protein in fibroblastic cells of human invasive carcinomas. Int J Cancer 82: 208–212.

    Article  CAS  PubMed  Google Scholar 

  • Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P et al. (1999). The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18: 2883–2891.

    Article  CAS  PubMed  Google Scholar 

  • Deming SL, Nass SJ, Dickson RB, Trock BJ . (2000). C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer 83: 1688–1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egeblad M, Werb Z . (2002). New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–174.

    Article  CAS  PubMed  Google Scholar 

  • Giles RH, van Es JH, Clevers H . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653: 1–24.

    CAS  PubMed  Google Scholar 

  • Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C et al. (1994). Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 54: 1812–1817.

    CAS  PubMed  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Heppner KJ, Matrisian LM, Jensen RA, Rodgers WH . (1996). Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol 149: 273–282.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F . (2002). Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22: 1172–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klopocki E, Kristiansen G, Wild PJ, Klaman I, Castanos-Velez E, Singer G et al. (2004). Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int J Oncol 25: 641–649.

    CAS  PubMed  Google Scholar 

  • Lane TF, Leder P . (1997). Wnt-10b directs hypermorphic development and transformation in mammary glands of male and female mice. Oncogene 15: 2133–2144.

    Article  CAS  PubMed  Google Scholar 

  • Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S et al. (2002). Activation of AXIN2 expression by β-catenin-T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem 277: 21657–21665.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lu W, He X, Schwartz AL, Bu G . (2004). LRP6 expression promotes cancer cell proliferation and tumorigenesis by altering β-catenin subcellular distribution. Oncogene 23: 9129–9135.

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y et al. (2000). β-Catenin, a novel prognostic marker for breast cancer: its roles in cyclin D1 expression and cancer progression. Proc Natl Acad Sci USA 97: 4262–4266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindvall C, Evans NC, Zylstra CR, Li Y, Alexander CM, Williams BO . (2006). The Wnt signaling receptor Lrp5 is required for mammary ductal stem cell activity and Wnt1-induced tumorigenesis. J Biol Chem 281: 35081–35087.

    Article  CAS  PubMed  Google Scholar 

  • Lindvall C, Bu W, Williams BO, Li Y . (2007). Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Rev 3: 157–168.

    Article  CAS  PubMed  Google Scholar 

  • Lindvall C, Zylstra CR, Evans N, West RA, Dykema K, Furge KA et al. (2009). The Wnt co-receptor Lrp6 is required for normal mouse mammary gland development. PLoS One 4: e5813.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu W, Kim KA, Liu J, Abo A, Feng X, Cao X et al. (2008). R-spondin1 synergizes with Wnt3A in inducing osteoblast differentiation and osteoprotegerin expression. FEBS Lett 582: 643–650.

    Article  CAS  PubMed  Google Scholar 

  • Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U et al. (2002). Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol 22: 1184–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh GG, Anderson JJ, Milton I, Steward M, Parr AH, Thomas MD et al. (1995). Determination of the prognostic value of cyclin D1 overexpression in breast cancer. Oncogene 11: 885–891.

    CAS  PubMed  Google Scholar 

  • Moon RT, Kohn AD, De Ferrari GV, Kaykas A . (2004). WNT and β-catenin signalling: diseases and therapies. Nat Rev Genet 5: 691–701.

    Article  CAS  PubMed  Google Scholar 

  • Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN . (1993). ApcMin, a mutation in the murine Apc gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. Proc Natl Acad Sci USA 90: 8977–8981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nass SJ, Dickson RB . (1997). Defining a role for c-Myc in breast tumorigenesis. Breast Cancer Res Treat 44: 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen BS, Sehested M, Kjeldsen L, Borregaard N, Rygaard J, Danø K . (1997). Expression of matrix metalloprotease-9 in vascular pericytes in human breast cancer. Lab Invest 77: 345–355.

    CAS  PubMed  Google Scholar 

  • Nielsen BS, Rank F, Lopez JM, Balbin M, Vizoso F, Lund LR et al. (2001). Collagenase-3 expression in breast myofibroblasts as a molecular marker of transition of ductal carcinoma in situ lesions to invasive ductal carcinomas. Cancer Res 61: 7091–7100.

    CAS  PubMed  Google Scholar 

  • Nusse R, Varmus HE . (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31: 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Nusse R, van Ooyen A, Cox D, Fung YK, Varmus H . (1984). Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 307: 131–136.

    Article  CAS  PubMed  Google Scholar 

  • Okada A, Bellocq JP, Rouyer N, Chenard MP, Rio MC, Chambon P et al. (1995). Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA 92: 2730–2734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters G, Brookes S, Smith R, Dickson C . (1983). Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell 33: 369–377.

    Article  CAS  PubMed  Google Scholar 

  • Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC . (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407: 535–538.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez S, Jafer O, Goker H, Summersgill BM, Zafarana G, Gillis AJ et al. (2003). Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2-p12.1. Oncogene 22: 1880–1891.

    Article  CAS  PubMed  Google Scholar 

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R et al. (1999). The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96: 5522–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98: 137–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi M, Tsunoda T, Seiki M, Nakamura Y, Furukawa Y . (2002). Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene 21: 5861–5867.

    Article  CAS  PubMed  Google Scholar 

  • Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y et al. (2000). LDL-receptor-related proteins in Wnt signal transduction. Nature 407: 530–535.

    Article  CAS  PubMed  Google Scholar 

  • Tamamura Y, Otani T, Kanatani N, Koyama E, Kitagaki J, Komori T et al. (2005). Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 280: 19185–19195.

    Article  CAS  PubMed  Google Scholar 

  • Tetsu O, McCormick F . (1999). β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 39: 422–426.

    Article  Google Scholar 

  • Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE . (1988). Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55: 619–625.

    Article  CAS  PubMed  Google Scholar 

  • Turashvili G, Bouchal J, Burkadze G, Kolar Z . (2006). Wnt signaling pathway in mammary gland development and carcinogenesis. Pathobiology 73: 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Ugolini F, Charafe-Jauffret E, Bardou VJ, Geneix J, Adelaide J, Labat-Moleur F et al. (2001). WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene 20: 5810–5817.

    Article  CAS  PubMed  Google Scholar 

  • Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV . (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369: 669–671.

    Article  CAS  PubMed  Google Scholar 

  • Wehrli M, Dougan ST, Caldwell K, O'Keefe L, Schwartz S, Vaizel-Ohayon D et al. (2000). arrow encodes an LDL-receptor-related protein essential for Wingless signaling. Nature 407: 527–530.

    Article  CAS  PubMed  Google Scholar 

  • Wolf C, Rouyer N, Lutz Y, Adida C, Loriot M, Bellocq JP et al. (1993). Stromelysin 3 belongs to a subgroup of proteinases expressed in breast carcinoma fibroblastic cells and possibly implicated in tumor progression. Proc Natl Acad Sci USA 90: 1843–1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu B, Crampton SP, Hughes CC . (2007). Wnt signaling induces matrix metalloproteinase expression and regulates T cell transmigration. Immunity 26: 227–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan D, Wiesman M, Rohan M, Chan V, Jefferson AB, Guo L et al. (2001). Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/β-catenin signaling is activated in human colon tumors. Proc Natl Acad Sci USA 98: 14973–14978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Christof Niehrs (German Cancer Research Center) for providing LRP6 cDNA, Dr Philip Leder (Harvard Medical School) for providing the MMTV–SV40–Bssk vector, Dr Gail VW Johnson (University of Rochester) for providing the GST–E-cadherin construct, and Dr Jin-Moo Lee for providing rat brain sections subjected to hypoxia–ischemia as positive controls for apoptosis. We also thank Dr Taj King for critical reading of the manuscript. This work was supported by grants from the National Institutes of Health R01CA100520 (to GB) and RO1CA124531 (to YL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Bu.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Li, Y., Liu, Q. et al. Wnt signaling activation and mammary gland hyperplasia in MMTV–LRP6 transgenic mice: implication for breast cancer tumorigenesis. Oncogene 29, 539–549 (2010). https://doi.org/10.1038/onc.2009.339

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.339

Keywords

This article is cited by

Search

Quick links