Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer

Abstract

Several decades of research have sought to characterize tumor cell metabolism in the hope that tumor-specific activities can be exploited to treat cancer. Having originated from Warburg's seminal observation of aerobic glycolysis in tumor cells, most of this attention has focused on glucose metabolism. However, since the 1950s cancer biologists have also recognized the importance of glutamine (Q) as a tumor nutrient. Glutamine contributes to essentially every core metabolic task of proliferating tumor cells: it participates in bioenergetics, supports cell defenses against oxidative stress and complements glucose metabolism in the production of macromolecules. The interest in glutamine metabolism has been heightened further by the recent findings that c-myc controls glutamine uptake and degradation, and that glutamine itself exerts influence over a number of signaling pathways that contribute to tumor growth. These observations are stimulating a renewed effort to understand the regulation of glutamine metabolism in tumors and to develop strategies to target glutamine metabolism in cancer. In this study we review the protean roles of glutamine in cancer, both in the direct support of tumor growth and in mediating some of the complex effects on whole-body metabolism that are characteristic of tumor progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Abcouwer SF, Schwarz C, Meguid RA . (1999). Glutamine deprivation induces the expression of GADD45 and GADD153 primarily by mRNA stabilization. J Biol Chem 274: 28645–28651.

    Article  CAS  PubMed  Google Scholar 

  • Aiken KJ, Bickford JS, Kilberg MS, Nick HS . (2008). Metabolic regulation of manganese superoxide dismutase expression via essential amino acid deprivation. J Biol Chem 283: 10252–10263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arcella A, Carpinelli G, Battaglia G, D'Onofrio M, Santoro F, Ngomba RT et al. (2005). Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neuro Oncol 7: 236–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardawi MS, Majzoub MF, Masoud IM, Newsholme EA . (1989). Enzymic and metabolic adaptations in the gastrocnemius, plantaris and soleus muscles of hypocaloric rats. Biochem J 261: 219–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bangsbo J, Kiens B, Richter EA . (1996). Ammonia uptake in inactive muscles during exercise in humans. Am J Physiol 270: E101–E106.

    CAS  PubMed  Google Scholar 

  • Bergstrom J, Furst P, Noree LO, Vinnars E . (1974). Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 36: 693–697.

    Article  CAS  PubMed  Google Scholar 

  • Bobrovnikova-Marjon EV, Marjon PL, Barbash O, Vander Jagt DL, Abcouwer SF . (2004). Expression of angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 is highly responsive to ambient glutamine availability: role of nuclear factor-kappaB and activating protein-1. Cancer Res 64: 4858–4869.

    Article  CAS  PubMed  Google Scholar 

  • Brand K . (1985). Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem J 228: 353–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasse-Lagnel C, Lavoinne A, Husson A . (2009). Control of mammalian gene expression by amino acids, especially glutamine. FEBS J 276: 1826–1844.

    Article  CAS  PubMed  Google Scholar 

  • Chen MK, Espat NJ, Bland KI, Copeland 3rd EM, Souba WW . (1993). Influence of progressive tumor growth on glutamine metabolism in skeletal muscle and kidney. Ann Surg 217: 655–666 (discussion 666—667).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ . (2008). Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med 10: 767–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . (2008a). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Thompson CB . (2006). Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem 281: 37372–37380.

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S et al. (2007). Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104: 19345–19350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB . (2008b). Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18: 54–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donadio AC, Lobo C, Tosina M, de la Rosa V, Martin-Rufian M, Campos-Sandoval JA et al. (2008). Antisense glutaminase inhibition modifies the O-GlcNAc pattern and flux through the hexosamine pathway in breast cancer cells. J Cell Biochem 103: 800–811.

    Article  CAS  PubMed  Google Scholar 

  • Eagle H . (1955). Nutrition needs of mammalian cells in tissue culture. Science 122: 501–514.

    Article  CAS  PubMed  Google Scholar 

  • Eliasen MM, Winkler W, Jordan V, Pokar M, Marchetti M, Roth E et al. (2006). Adaptive cellular mechanisms in response to glutamine-starvation. Front Biosci 11: 3199–3211.

    Article  CAS  PubMed  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64: 3892–3899.

    Article  CAS  PubMed  Google Scholar 

  • Erbil Y, Oztezcan S, Giris M, Barbaros U, Olgac V, Bilge H et al. (2005). The effect of glutamine on radiation-induced organ damage. Life Sci 78: 376–382.

    Article  CAS  PubMed  Google Scholar 

  • Estrela JM, Ortega A, Obrador E . (2006). Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43: 143–181.

    Article  CAS  PubMed  Google Scholar 

  • Flier JS, Mueckler MM, Usher P, Lodish HF . (1987). Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235: 1492–1495.

    Article  CAS  PubMed  Google Scholar 

  • Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F . (2009). Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS ONE 4: e4715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial GLS expression and glutamine metabolism. Nature 458: 762–765 e-pub ahead of print 15 February 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaunitz F, Heise K, Schumann R, Gebhardt R . (2002). Glucocorticoid induced expression of glutamine synthetase in hepatoma cells. Biochem Biophys Res Commun 296: 1026–1032.

    Article  CAS  PubMed  Google Scholar 

  • Guerin PJ, Furtak T, Eng K, Gauthier ER . (2006). Oxidative stress is not required for the induction of apoptosis upon glutamine starvation of Sp2/0-Ag14 hybridoma cells. Eur J Cell Biol 85: 355–365.

    Article  CAS  PubMed  Google Scholar 

  • Hiatt HH . (1957). Glycolytic activity in vivo of the mouse Ehrlich ascites tumor. Cancer Res 17: 240–244.

    CAS  PubMed  Google Scholar 

  • Holroyde CP, Skutches CL, Boden G, Reichard GA . (1984). Glucose metabolism in cachectic patients with colorectal cancer. Cancer Res 44: 5910–5913.

    CAS  PubMed  Google Scholar 

  • Huang Q, Lau SS, Monks TJ . (1999). Induction of gadd153 mRNA by nutrient deprivation is overcome by glutamine. Biochem J 341 (Pt 1): 225–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert-Buron A, Leblond J, Jacquot A, Ducrotte P, Dechelotte P, Coeffier M . (2006). Glutamine pretreatment reduces IL-8 production in human intestinal epithelial cells by limiting IkappaBalpha ubiquitination. J Nutr 136: 1461–1465.

    Article  CAS  PubMed  Google Scholar 

  • Kandil HM, Argenzio RA, Chen W, Berschneider HM, Stiles AD, Westwick JK et al. (1995). L-glutamine and L-asparagine stimulate ODC activity and proliferation in a porcine jejunal enterocyte line. Am J Physiol 269: G591–G599.

    CAS  PubMed  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV . (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3: 177–185.

    Article  CAS  PubMed  Google Scholar 

  • Klimberg VS, Souba WW, Salloum RM, Plumley DA, Cohen FS, Dolson DJ et al. (1990). Glutamine-enriched diets support muscle glutamine metabolism without stimulating tumor growth. J Surg Res 48: 319–323.

    Article  CAS  PubMed  Google Scholar 

  • Knox WE, Horowitz ML, Friedell GH . (1969). The proportionality of glutaminase content to growth rate and morphology of rat neoplasms. Cancer Res 29: 669–680.

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Millhorn DE . (2001). Hypoxia regulates glutamate metabolism and membrane transport in rat PC12 cells. J Neurochem 76: 1935–1948.

    Article  CAS  PubMed  Google Scholar 

  • Kovacevic Z, McGivan JD . (1983). Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 63: 547–605.

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Pouyssegur J . (2008). Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13: 472–482.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn KS, Schuhmann K, Stehle P, Darmaun D, Furst P . (1999). Determination of glutamine in muscle protein facilitates accurate assessment of proteolysis and de novo synthesis-derived endogenous glutamine production. Am J Clin Nutr 70: 484–489.

    Article  CAS  PubMed  Google Scholar 

  • Kvamme E, Svenneby G . (1960). Effect of anaerobiosis and addition of keto acids on glutamine utilization by Ehrlich ascites-tumor cells. Biochim Biophys Acta 42: 187–188.

    Article  CAS  PubMed  Google Scholar 

  • Larson SD, Li J, Chung DH, Evers BM . (2007). Molecular mechanisms contributing to glutamine-mediated intestinal cell survival. Am J Physiol Gastrointest Liver Physiol 293: G1262–G1271.

    Article  CAS  PubMed  Google Scholar 

  • Linder-Horowitz M, Knox WE, Morris HP . (1969). Glutaminase activities and growth rates of rat hepatomas. Cancer Res 29: 1195–1199.

    CAS  PubMed  Google Scholar 

  • Lo M, Wang YZ, Gout PW . (2008). The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215: 593–602.

    Article  CAS  PubMed  Google Scholar 

  • Lobo C, Ruiz-Bellido MA, Aledo JC, Marquez J, Nunez De Castro I, Alonso FJ . (2000). Inhibition of glutaminase expression by antisense mRNA decreases growth and tumourigenicity of tumour cells. Biochem J 348 (Pt 2): 257–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O et al. (2006). p53 regulates mitochondrial respiration. Science 312: 1650–1653.

    Article  CAS  PubMed  Google Scholar 

  • Matsuno T, Satoh T . (1986). Glutamine metabolism in the avian host bearing transplantable hepatomatous growth induced by MC-29 virus. Int J Biochem 18: 187–189.

    Article  CAS  PubMed  Google Scholar 

  • Mazurek S, Boschek CB, Hugo F, Eigenbrodt E . (2005). Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol 15: 300–308.

    Article  CAS  PubMed  Google Scholar 

  • Medina MA, Sanchez-Jimenez F, Marquez J, Rodriguez Quesada A, Nunez de Castro I . (1992). Relevance of glutamine metabolism to tumor cell growth. Mol Cell Biochem 113: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Miller AL . (1999). Therapeutic considerations of L-glutamine: a review of the literature. Altern Med Rev 4: 239–248.

    CAS  PubMed  Google Scholar 

  • NCI Website (2009). http://www.cancer.gov/cancertopics/pdq/supportivecare/nutrition/.

  • Newsholme EA, Crabtree B, Ardawi MS . (1985). Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance. Q J Exp Physiol 70: 473–489.

    Article  CAS  PubMed  Google Scholar 

  • Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B et al. (2009). Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136: 521–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicoletti F, Arcella A, Iacovelli L, Battaglia G, Giangaspero F, Melchiorri D . (2007). Metabotropic glutamate receptors: new targets for the control of tumor growth? Trends Pharmacol Sci 28: 206–213.

    Article  CAS  PubMed  Google Scholar 

  • Ohtani Y, Harada T, Funasaka Y, Nakao K, Takahara C, Abdel-Daim M et al. (2008). Metabotropic glutamate receptor subtype-1 is essential for in vivo growth of melanoma. Oncogene 27: 7162–7170.

    Article  CAS  PubMed  Google Scholar 

  • Olde Damink SW, Jalan R, Dejong CH . (2009). Interorgan ammonia trafficking in liver disease. Metab Brain Dis 24: 169–181.

    Article  CAS  PubMed  Google Scholar 

  • Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M et al. (2000). Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275: 21797–21800.

    Article  CAS  PubMed  Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC . (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3: 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Parry-Billings M, Leighton B, Dimitriadis GD, Curi R, Bond J, Bevan S et al. (1991). The effect of tumour bearing on skeletal muscle glutamine metabolism. Int J Biochem 23: 933–937.

    Article  CAS  PubMed  Google Scholar 

  • Pollock PM, Cohen-Solal K, Sood R, Namkoong J, Martino JJ, Koganti A et al. (2003). Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet 34: 108–112.

    Article  CAS  PubMed  Google Scholar 

  • Quesada AR, Medina MA, Marquez J, Sanchez-Jimenez FM, Nunez de Castro I . (1988). Contribution by host tissues to circulating glutamine in mice inoculated with Ehrlich ascites tumor cells. Cancer Res 48: 1551–1553.

    CAS  PubMed  Google Scholar 

  • Ramanathan A, Wang C, Schreiber SL . (2005). Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci USA 102: 5992–5997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichard GA MN, Hochella NJ, Patterson AL, Weinhouse S . (1963). Quantitative estimation of teh Cori cycle in the human. J Biol Chem 238: 498–501.

    Article  Google Scholar 

  • Reitzer LJ, Wice BM, Kennell D . (1979). Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem 254: 2669–2676.

    Article  CAS  PubMed  Google Scholar 

  • Rhoads JM, Argenzio RA, Chen W, Rippe RA, Westwick JK, Cox AD et al. (1997). L-glutamine stimulates intestinal cell proliferation and activates mitogen-activated protein kinases. Am J Physiol 272: G943–G953.

    CAS  PubMed  Google Scholar 

  • Roth E . (2007). Immune and cell modulation by amino acids. Clin Nutr 26: 535–544.

    Article  CAS  PubMed  Google Scholar 

  • Sauer LA, Dauchy RT . (1983). Ketone body, glucose, lactic acid, and amino acid utilization by tumors in vivo in fasted rats. Cancer Res 43: 3497–3503.

    CAS  PubMed  Google Scholar 

  • Sauer LA, Stayman 3rd JW, Dauchy RT . (1982). Amino acid, glucose, and lactic acid utilization in vivo by rat tumors. Cancer Res 42: 4090–4097.

    CAS  PubMed  Google Scholar 

  • Segura JA, Donadio AC, Lobo C, Mates JM, Marquez J, Alonso FJ . (2005). Inhibition of glutaminase expression increases Sp1 phosphorylation and Sp1/Sp3 transcriptional activity in Ehrlich tumor cells. Cancer Lett 218: 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL . (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732.

    Article  CAS  PubMed  Google Scholar 

  • Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA et al. (1997). c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA 94: 6658–6663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skerry TM, Genever PG . (2001). Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci 22: 174–181.

    Article  CAS  PubMed  Google Scholar 

  • Soh H, Wasa M, Fukuzawa M . (2007). Hypoxia upregulates amino acid transport in a human neuroblastoma cell line. J Pediatr Surg 42: 608–612.

    Article  PubMed  Google Scholar 

  • Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN et al. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118: 3930–3942.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souba WW . (1993). Glutamine and cancer. Ann Surg 218: 715–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M . (2001). Glutamate release promotes growth of malignant gliomas. Nat Med 7: 1010–1015.

    Article  CAS  PubMed  Google Scholar 

  • Tisdale MJ . (2005). Molecular pathways leading to cancer cachexia. Physiology (Bethesda) 20: 340–348.

    CAS  Google Scholar 

  • Tisdale MJ . (2009). Mechanisms of cancer cachexia. Physiol Rev 89: 381–410.

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Marquardt C, Foker J . (1976). Aerobic glycolysis during lymphocyte proliferation. Nature 261: 702–705.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Watford M . (2007). Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes. Biochim Biophys Acta 1770: 594–600.

    Article  CAS  PubMed  Google Scholar 

  • Warburg O . (1925). Uber den stoffwechsel der carcinomzelle. Klin Wochenschr 4: 534–536.

    Article  CAS  Google Scholar 

  • Warburg O . (1956). On respiratory impairment in cancer cells. Science 124: 269–270.

    Article  CAS  PubMed  Google Scholar 

  • Watatani Y, Kimura N, Shimizu YI, Akiyama I, Tonaki D, Hirose H et al (2007). Amino acid limitation induces expression of ATF5 mRNA at the post-transcriptional level. Life Sci 80: 879–885.

    Article  CAS  PubMed  Google Scholar 

  • Weiner ID, Hamm LL . (2007). Molecular mechanisms of renal ammonia transport. Annu Rev Physiol 69: 317–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105: 18782–18787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo JH, Lo JC, Nissom PM, Wong VV . (2006). Glutamine or glucose starvation in hybridoma cultures induces death receptor and mitochondrial apoptotic pathways. Biotechnol Lett 28: 1445–1452.

    Article  CAS  PubMed  Google Scholar 

  • Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y . (2007). Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178: 93–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zu XL, Guppy M . (2004). Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313: 459–465.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Roland Knoblauch and Andrew Mullen for critically reading this paper. RJD is supported by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (DK072565) and the American Cancer Society (ACS-IRG-02-196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J DeBerardinis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeBerardinis, R., Cheng, T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010). https://doi.org/10.1038/onc.2009.358

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.358

Keywords

This article is cited by

Search

Quick links