Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma

Abstract

Promoter region hyermethylation and transcriptional silencing is a frequent cause of tumour suppressor gene (TSG) inactivation in many types of human cancers. Functional epigenetic studies, in which gene expression is induced by treatment with demethylating agents, may identify novel genes with tumour-specific methylation. We used high-density gene expression microarrays in a functional epigenetic study of 11 renal cell carcinoma (RCC) cell lines. Twenty-eight genes were then selected for analysis of promoter methylation status in cell lines and primary RCC. Eight genes (BNC1, PDLIM4, RPRM, CST6, SFRP1, GREM1, COL14A1 and COL15A1) showed frequent (>30% of RCC tested) tumour-specific promoter region methylation. Hypermethylation was associated with transcriptional silencing. Re-expression of BNC1, CST6, RPRM and SFRP1 suppressed the growth of RCC cell lines and RNA interference knock-down of BNC1, SFRP1 and COL14A1 increased the growth of RCC cell lines. Methylation of BNC1 or COL14A1 was associated with a poorer prognosis independent of tumour size, stage or grade. The identification of these epigenetically inactivated candidate RCC TSGs can provide insights into renal tumourigenesis and a basis for developing novel therapies and biomarkers for prognosis and detection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ai L, Kim WJ, Kim TY, Fields CR, Massoll NA, Robertson KD et al. (2006). Epigenetic silencing of the tumor suppressor cystatin M occurs during breast cancer progression. Cancer Res 66: 7899–7909.

    Article  CAS  PubMed  Google Scholar 

  • Amenta PS, Scivoletti NA, Newman MD, Sciancalepore JP, Li D, Myers JC . (2005). Proteoglycan-collagen XV in human tissues is seen linking banded collagen fibers subjacent to the basement membrane. J Histochem Cytochem 53: 165–176.

    Article  CAS  PubMed  Google Scholar 

  • Awakura Y, Nakamura E, Ito N, Kamoto T, Ogawa O . (2007). Methylation-associated silencing of SFRP1 in renal cell carcinoma. Oncol Rep 20: 1257–1263.

    Google Scholar 

  • Battagli C, Uzzo RG, Dulaimi E, Ibanez de Caceres I, Krassenstein R, Al-Saleem T et al. (2003). Promoter hypermethylation of tumor suppressor genes in urine from kidney cancer patients. Cancer Res 63: 8695–8699.

    CAS  PubMed  Google Scholar 

  • Bellail AC, Hunter SB, Brat DJ, Tan C, Van Meir EG . (2004). Microregional extracellular matrix heterogeneity in brain modulates glioma cell invasion. Int J Biochem Cell Biol 36: 1046–1069.

    Article  CAS  PubMed  Google Scholar 

  • Bernal C, Aguayo F, Villarroel C, Vargas M, Diaz I, Ossandon FJ et al. (2008). Reprimo as a potential biomarker for early detection in gastric cancer. Clin Cancer Res 14: 6264–6269.

    Article  CAS  PubMed  Google Scholar 

  • Bishop T, Lau KW, Epstein AC, Kim SK, Jiang M, O'Rourke D et al. (2004). Genetic analysis of pathways regulated by the von Hippel-Lindau tumor suppressor in Caenorhabditis elegans. PLoS Biol 2: e289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boumber YA, Kondo Y, Chen X, Shen L, Gharibyan V, Konishi K et al. (2007). RIL, a LIM gene on 5q31, is silenced by methylation in cancer and sensitizes cancer cells to apoptosis. Cancer Res 67: 1997–2005.

    Article  CAS  PubMed  Google Scholar 

  • Brandan E, Retamal C, Cabello-Verrugio C, Marzolo MP . (2006). The low density lipoprotein receptor-related protein functions as an endocytic receptor for decorin. J Biol Chem 281: 31562–31571.

    Article  CAS  PubMed  Google Scholar 

  • Breault JE, Shiina H, Igawa M, Ribeiro-Filho LA, Deguchi M, Enokida H et al. (2005). Methylation of the gamma-catenin gene is associated with poor prognosis of renal cell carcinoma. Clin Cancer Res 11: 557–564.

    CAS  PubMed  Google Scholar 

  • Bromme D, Kaleta J . (2002). Thiol-dependent cathepsins: pathophysiological implications and recent advances in inhibitor design. Curr Pharm Des 8: 1639–1658.

    Article  CAS  PubMed  Google Scholar 

  • Chitalia VC, Foy RL, Bachschmid MM, Zeng L, Panchenko MV, Zhou MI et al. (2008). Jade-1 inhibits Wnt signalling by ubiquitylating beta-catenin and mediates Wnt pathway inhibition by pVHL. Nat Cell Biol 10: 1208–1216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury S, Larkin JM, Gore ME . (2008). Recent advances in the treatment of renal cell carcinoma and the role of targeted therapies. Eur J Cancer 44: 2152–2161.

    Article  CAS  PubMed  Google Scholar 

  • Christoph F, Weikert S, Kempkensteffen C, Krause H, Schostak M, Kollermann J et al. (2006). Promoter hypermethylation profile of kidney cancer with new proapoptotic p53 target genes and clinical implications. Clin Cancer Res 12: 5040–5046.

    Article  CAS  PubMed  Google Scholar 

  • Clifford SC, Cockman ME, Smallwood AC, Mole DR, Woodward ER, Maxwell PH et al. (2001). Contrasting effects on HIF-1alpha regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 10: 1029–1038.

    Article  CAS  PubMed  Google Scholar 

  • Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER . (1998). Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosomes Cancer 22: 200–209.

    Article  CAS  PubMed  Google Scholar 

  • Costa VL, Henrique R, Ribeiro FR, Pinto M, Oliveira J, Lobo F et al. (2007). Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors. BMC Cancer 7: 133.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahl E, Wiesmann F, Woenckhaus M, Stoehr R, Wild PJ, Veeck J et al. (2007). Frequent loss of SFRP1 expression in multiple human solid tumours: association with aberrant promoter methylation in renal cell carcinoma. Oncogene 26: 5680–5691.

    Article  CAS  PubMed  Google Scholar 

  • Dallol A, Forgacs E, Martinez A, Sekido Y, Walker R, Kishida T et al. (2002). Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene 21: 3020–3028.

    Article  CAS  PubMed  Google Scholar 

  • Ehnis T, Dieterich W, Bauer M, Kresse H, Schuppan D . (1997). Localization of a binding site for the proteoglycan decorin on collagen XIV (undulin). J Biol Chem 272: 20414–20419.

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boye P . (2007). Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18: 581–592.

    Article  CAS  PubMed  Google Scholar 

  • Foster K, Prowse A, van den Berg A, Fleming S, Hulsbeek MM, Crossey PA . (1994). Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum Mol Genet 3: 2169–2173.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalgo ML, Yegnasubramanian S, Yan G, Rogers CG, Nicol TL, Nelson WG et al. (2004). Molecular profiling and classification of sporadic renal cell carcinoma by quantitative methylation analysis. Clin Cancer Res 10: 7276–7283.

    Article  CAS  PubMed  Google Scholar 

  • Gumz ML, Zou H, Kreinest PA, Childs AC, Belmonte LS, LeGrand SN et al. (2007). Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell renal cell carcinoma. Clin Cancer Res 13: 4740–4749.

    Article  CAS  PubMed  Google Scholar 

  • Harris A, Harris H, Hollingsworth MA . (2007). Complete suppression of tumor formation by high levels of basement membrane collagen. Mol Cancer Res 5: 1241–1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S . (1994). Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91: 9700–9704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoque MO, Begum S, Topaloglu O, Jeronimo C, Mambo E, Westra WH et al. (2004). Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res 64: 5511–5517.

    Article  CAS  PubMed  Google Scholar 

  • Ibanez de Caceres I, Dulaimi E, Hoffman AM, Al-Saleem T, Uzzo RG, Cairns P . (2006). Identification of novel target genes by an epigenetic reactivation screen of renal cancer. Cancer Res 66: 5021–5028.

    Article  CAS  PubMed  Google Scholar 

  • Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML . (1993). Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260: 1317–1320.

    Article  CAS  PubMed  Google Scholar 

  • Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H . (2005). Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res 65: 4218–4227.

    Article  CAS  PubMed  Google Scholar 

  • Mancini V, Battaglia M, Ditonno P, Palazzo S, Lastilla G, Montironi R et al. (2008). Current insights in renal cell cancer pathology. Urol Oncol 26: 225–238.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275.

    Article  CAS  PubMed  Google Scholar 

  • McRonald FE, Morris MR, Gentle D, Winchester L, Baban D, Ragoussis J et al. (2009). CpG methylation profiling in VHL related and VHL unrelated renal cell carcinoma. Mol Cancer 8: 31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris MR, Gentle D, Abdulrahman M, Clarke N, Brown M, Kishida T et al. (2008). Functional epigenomics approach to identify methylated candidate tumour suppressor genes in renal cell carcinoma. Br J Cancer 98: 496–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris MR, Gentle D, Abdulrahman M, Maina EN, Gupta K, Banks RE et al. (2005). Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res 65: 4598–4606.

    Article  CAS  PubMed  Google Scholar 

  • Morris MR, Hesson LB, Wagner KJ, Morgan NV, Astuti D, Lees RD et al. (2003). Multigene methylation analysis of Wilms’ tumour and adult renal cell carcinoma. Oncogene 22: 6794–6801.

    Article  CAS  PubMed  Google Scholar 

  • Morrissey C, Martinez A, Zatyka M, Agathanggelou A, Honorio S, Astuti D et al. (2001). Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res 61: 7277–7281.

    CAS  PubMed  Google Scholar 

  • Nomoto S, Kinoshita T, Kato K, Otani S, Kasuya H, Takeda S et al. (2007). Hypermethylation of multiple genes as clonal markers in multicentric hepatocellular carcinoma. Br J Cancer 97: 1260–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohki R, Nemoto J, Murasawa H, Oda E, Inazawa J, Tanaka N et al. (2000). Reprimo, a new candidate mediator of the p53-mediated cell cycle arrest at the G2 phase. J Biol Chem 275: 22627–22630.

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Ai L, Ramachandran C, Yao B, Gopalakrishnan S, Fields CR et al. (2008). Invasion suppressor cystatin E/M (CST6): high-level cell type-specific expression in normal brain and epigenetic silencing in gliomas. Lab Invest 88: 910–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramchandran R, Dhanabal M, Volk R, Waterman MJ, Segal M, Lu H et al. (1999). Antiangiogenic activity of restin, NC10 domain of human collagen XV: comparison to endostatin. Biochem Biophys Res Commun 255: 735–739.

    Article  CAS  PubMed  Google Scholar 

  • Raval RR, Lau KW, Tran MG, Sowter HM, Mandriota SJ, Li JL et al. (2005). Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol Cell Biol 25: 5675–5686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santra M, Reed CC, Iozzo RV . (2002). Decorin binds to a narrow region of the epidermal growth factor (EGF) receptor, partially overlapping but distinct from the EGF-binding epitope. J Biol Chem 277: 35671–35681.

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Fukushima N, Maitra A, Matsubayashi H, Yeo CJ, Cameron JL et al. (2003). Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63: 3735–3742.

    CAS  PubMed  Google Scholar 

  • Sato N, Fukushima N, Matsubayashi H, Iacobuzio-Donahue CA, Yeo CJ, Goggins M . (2006). Aberrant methylation of Reprimo correlates with genetic instability and predicts poor prognosis in pancreatic ductal adenocarcinoma. Cancer 107: 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer L, Tsalastra W, Babelova A, Baliova M, Minnerup J, Sorokin L et al. (2007). Decorin-mediated regulation of fibrillin-1 in the kidney involves the insulin-like growth factor-I receptor and Mammalian target of rapamycin. Am J Pathol 170: 301–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuppan D, Cantaluppi MC, Becker J, Veit A, Bunte T, Troyer D et al. (1990). Undulin, an extracellular matrix glycoprotein associated with collagen fibrils. J Biol Chem 265: 8823–8832.

    CAS  PubMed  Google Scholar 

  • Shames DS, Girard L, Gao B, Sato M, Lewis CM, Shivapurkar N et al. (2006). A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Med 3: e486.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shridhar R, Zhang J, Song J, Booth BA, Kevil CG, Sotiropoulou G et al. (2004). Cystatin M suppresses the malignant phenotype of human MDA-MB-435S cells. Oncogene 23: 2206–2215.

    Article  CAS  PubMed  Google Scholar 

  • Smits KM, Schouten LJ, van Dijk BA, Hulsbergen-van de Kaa CA, Wouters KA, Oosterwijk E et al. (2008). Genetic and epigenetic alterations in the von hippel-lindau gene: the influence on renal cancer prognosis. Clin Cancer Res 14: 782–787.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Shigematsu H, Shames DS, Sunaga N, Takahashi T, Shivapurkar N et al. (2005). DNA methylation-associated inactivation of TGFbeta-related genes DRM/Gremlin, RUNX3, and HPP1 in human cancers. Br J Cancer 93: 1029–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Suzuki M, Shigematsu H, Shivapurkar N, Echebiri C, Nomura M et al. (2005). Aberrant methylation of Reprimo in human malignancies. Int J Cancer 115: 503–510.

    Article  CAS  PubMed  Google Scholar 

  • Urakami S, Shiina H, Enokida H, Hirata H, Kawamoto K, Kawakami T et al. (2006). Wnt antagonist family genes as biomarkers for diagnosis, staging, and prognosis of renal cell carcinoma using tumor and serum DNA. Clin Cancer Res 12: 6989–6997.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang S, Schultz RM, Tseng H . (2006). Search for basonuclin target genes. Biochem Biophys Res Commun 348: 1261–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wistuba II . (2007). Genetics of preneoplasia: lessons from lung cancer. Curr Mol Med 7: 3–14.

    Article  CAS  PubMed  Google Scholar 

  • Yamada D, Kikuchi S, Williams YN, Sakurai-Yageta M, Masuda M, Maruyama T et al. (2006). Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma. Int J Cancer 118: 916–923.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita K, Upadhyay S, Osada M, Hoque MO, Xiao Y, Mori M et al. (2002). Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell 2: 485–495.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cancer Research UK for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E R Maher.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, M., Ricketts, C., Gentle, D. et al. Identification of candidate tumour suppressor genes frequently methylated in renal cell carcinoma. Oncogene 29, 2104–2117 (2010). https://doi.org/10.1038/onc.2009.493

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.493

Keywords

This article is cited by

Search

Quick links