Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Processing of CD109 by furin and its role in the regulation of TGF-β signaling

Abstract

CD109 is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein, whose expression is upregulated in squamous cell carcinomas of the lung, esophagus, uterus and oral cavity. CD109 negatively regulates transforming growth factor (TGF)-β signaling in keratinocytes by directly modulating receptor activity. In this study, we further characterized CD109 regulation of TGF-β signaling and cell proliferation. We found that CD109 is produced as a 205 kDa glycoprotein, which is then processed in the Golgi apparatus into 180 kDa and 25 kDa proteins by furin (furinase). 180 kDa CD109 associated with GPI-anchored 25 kDa CD109 on the cell surface and was also secreted into the culture medium. To investigate whether furinase cleavage of CD109 is necessary for its biological activity, we mutated arginine 1273 in the CD109 furinase cleavage motif (amino acid 1270-RRRR-1273) to serine (R1273S). Interestingly, CD109 R1273S neither significantly impaired TGF-β signaling nor affected TGF-β-mediated suppression of cell growth, although it was expressed on the cell surface as a 205 kDa protein. Consistent with this finding, the 180 kDa and 25 kDa CD109 complex, but not CD109 R1273S, associated with the type I TGF-β receptor. These findings indicate that processing of CD109 into 180 kDa and 25 kDa proteins by furin, followed by complex formation with the type I TGF-β receptor is required for the regulation of TGF-β signaling in cancer cells and keratinocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arnold JN, Wallis R, Willis AC, Harvey DJ, Royle L, Dwek RA et al. (2006). Interaction of mannan binding lectin with α2 macroglobulin via exposed oligomannose glycans. A conversed feature of the thiol ester protein family. J Biol Chem 281: 6955–6963.

    Article  CAS  PubMed  Google Scholar 

  • Bierie B, Moses HL . (2006). Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6: 506–520.

    Article  CAS  PubMed  Google Scholar 

  • Dennler S, Goumans MJ, Ten Dijke P . (2002). Transforming growth factor beta signal transduction. J Leukoc Biol 71: 731–740.

    CAS  PubMed  Google Scholar 

  • Derynck R, Akhurst RJ, Balmain A . (2001). TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29: 117–129.

    Article  CAS  PubMed  Google Scholar 

  • Dubois CM, Laprise MH, Blanchette F, Gentry LE, Leduc R . (1995). Processing of transforming growth factor beta 1 precursor by human furin convertase. J Biol Chem 270: 10618–10624.

    Article  CAS  PubMed  Google Scholar 

  • Finnson KW, Tam BY, Liu K, Marcoux A, Lepage P, Roy S et al. (2006). Identification of CD109 as part of the TGF-β receptor system in human keratinocytes. FASEB J 20: 1525–1527.

    Article  CAS  PubMed  Google Scholar 

  • Garcia M, Mirre C, Quaroni A, Reggio H, Le Bivic A . (1993). GPI-anchored proteins associate to form microdomains during their intracellular transport in Caco-2 cells. J Cell Sci 104: 1281–1290.

    CAS  PubMed  Google Scholar 

  • Gentry LE, Nash BW . (1990). The pro-domain of pre-pro-transforming growth factor beta 1 when independently expressed is a functional binding protein for the mature growth factor. Biochemistry 29: 6851–6857.

    Article  CAS  PubMed  Google Scholar 

  • Giesert C, Marxer A, Sutherland DR, Schuh AC, Kanz L, Bürring HJ . (2003). Antibody W7C5 defines a CD109 epitope expressed on CD34+ and CD34- hematopoietic and mesenchymal stem cell subsets. Ann NY Acad Sci 996: 227–230.

    Article  CAS  PubMed  Google Scholar 

  • Guarnaccia SP, Shaper JH, Schnaar RL . (1983). Tunicamycin inhibits ganglioside biosynthesis in neuronal cells. Proc Natl Acad Sci USA 80: 1551–1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagiwara S, Murakumo Y, Sato T, Shigetomi T, Mitsudo K, Tohnai I et al. (2008). Up-regulation of CD109 expression is associated with carcinogenesis of the squamous epithelium of the oral cavity. Cancer Sci 99: 1916–1923.

    Article  CAS  PubMed  Google Scholar 

  • Haregewoin A, Solomon K, Hom RC, Soman G, Bergelson JM, Bhan AK et al. (1994). Cellular expression of a GPI-linked T cell activation protein. Cell Immunol 156: 357–370.

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M, Hagiwara S, Sato T, Jijiwa M, Murakumo Y, Maeda M et al. (2007). CD109, a new marker for myoepithelial cells of mammary, salivary, and lacrimal glands and prostate basal cells. Pathol Int 57: 245–250.

    Article  PubMed  Google Scholar 

  • Hasegawa M, Moritani S, Murakumo Y, Sato T, Hagiwara S, Suzuki C et al. (2008). CD109 expression in basal-like breast carcinoma. Pathol Int 58: 288–294.

    Article  PubMed  Google Scholar 

  • Hashimoto M, Ichihara M, Watanabe T, Kawai K, Koshikawa K, Yuasa N et al. (2004). Expression of CD109 in human cancer. Oncogene 23: 3716–3120.

    Article  CAS  PubMed  Google Scholar 

  • Jakowlew SB . (2006). Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev 25: 435–457.

    Article  CAS  PubMed  Google Scholar 

  • Kelton JG, Smith JW, Horsewood P, Humbert JR, Hayward CP, Warkentin TE . (1990). Gova/b alloantigen system on human platelets. Blood 75: 2172–2176.

    CAS  PubMed  Google Scholar 

  • Leivonen SK, Kähäri VM . (2007). Transforming growth factor-β signaling in cancer invasion and metastasis. Int J Cancer 121: 2119–2124.

    Article  CAS  PubMed  Google Scholar 

  • Lin M, Sutherland DR, Horsfall W, Totty N, Yeo E, Nayar R et al. (2002). Cell surface antigen CD109 is a novel member of the α2 macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood 99: 1683–1691.

    Article  CAS  PubMed  Google Scholar 

  • Massagué J, Seoane J, Wotton D . (2005). Smad transcription factors. Genes Dev 19: 2783–2810.

    Article  PubMed  Google Scholar 

  • Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G . (1992). Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. J Biol Chem 267: 16396–16402.

    CAS  PubMed  Google Scholar 

  • Moustakas A, Pardali K, Gaal A, Heldin CH . (2002). Mechanisms of TGF-βsignaling in regulation of cell growth and differentiation. Immunol Lett 82: 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Murray LJ, Bruno E, Uchida N, Hoffman R, Nayar R, Yeo EL et al. (1999). CD109 is expressed on a subpopulation of CD34+ cells enriched in hematopoietic stem and progenitor cells. Exp Hematol 27: 1282–1294.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama K . (1997). Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 327: 625–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouweland AM, Duijnhoven HL, Keizer GD, Dorssers LC, Ven WJ . (1990). Structural homology between the human fur gene product and the subtilisin-like protease encoded by yeast KEX2. Nucleic Acids Res 18: 664.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pardali K, Moustakas A . (2007). Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim et Biophysi Acta 1775: 21–62.

    CAS  Google Scholar 

  • Rouillé Y, Duguay SJ, Lund K, Furuta M, Gong Q, Lipkind G et al. (1995). Proteolytic processing mechanism in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Front Neuroendocrinol 16: 322–361.

    Article  PubMed  Google Scholar 

  • Sato T, Murakumo Y, Hagiwara S, Jijiwa M, Suzuki C, Yatabe Y et al. (2007). High-level expression of CD109 is frequently detected in lung squamous cell carcinomas. Pathol Int 57: 719–724.

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Massagué J . (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113: 685–700.

    Article  CAS  PubMed  Google Scholar 

  • Steiner DF . (1998). The proprotein convertases. Curr Opin Chem Biol 2: 31–39.

    Article  CAS  PubMed  Google Scholar 

  • Struck DK, Lennarz WJ . (1977). Evidence for the participation of saccharide-lipids in the synthesis of the oligosaccharide chain of ovalbumin. J Biol Chem 252: 1007–1013.

    CAS  PubMed  Google Scholar 

  • Sutherland DR, Yeo E, Ryan A, Mills GB, Bailey D, Baker MA . (1991). Identification of a cell-surface antigen associated with activated T lymphoblasts and activated platelets. Blood 77: 84–93.

    CAS  PubMed  Google Scholar 

  • Takatsuki A, Arima K, Tamura G . (1971). Tunicamycin. a new antibiotic. I. Isolation and characterization of tunicamycin. J Antibiot 24: 215–223.

    Article  CAS  Google Scholar 

  • Tam BY, Finnson KW, Philip A . (2003). Glycosylphosphatidylinositol-anchored proteins regulate transforming growth factor-β signaling in human keratinocytes. J Biol Chem 278: 49610–49617.

    Article  CAS  PubMed  Google Scholar 

  • Thomas G . (2002). Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3: 753–766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waechter CJ, Harford JB . (1977). Evidence for the enzymatic transfer of N-acetylglucosamine from UDP-N-acetylglucosamine into dolichol derivative and glycoproteins by calf brain membranes. Arch Biochem Biophys 181: 185–198.

    Article  CAS  PubMed  Google Scholar 

  • Wakefield LM, Roberts AB . (2002). TGF-β signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 12: 22–29.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Sun W, Bai J, Ma L, Yu Y, Geng J et al. (2009). Growth inhibition induced by transforming growth factor-β1 in human oral squamous cell carcinoma. Mol Biol Rep 36: 861–869.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L et al. (2000). Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19: 1868–1874.

    Article  CAS  PubMed  Google Scholar 

  • Zhang JM, Hashimoto M, Kawai K, Murakumo Y, Sato T, Ichihara M et al. (2005). CD109 expression in squamous cell carcinoma of the uterine cervix. Pathol Int 55: 165–169.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid for Global Center of Excellence (GCOE) research, Scientific Research (A) and Scientific Research on Priority Area ‘Cancer’ commissioned by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (to MT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Takahashi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagiwara, S., Murakumo, Y., Mii, S. et al. Processing of CD109 by furin and its role in the regulation of TGF-β signaling. Oncogene 29, 2181–2191 (2010). https://doi.org/10.1038/onc.2009.506

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.506

Keywords

This article is cited by

Search

Quick links