Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma

Abstract

Pilocytic astrocytomas (PAs), WHO malignancy grade I, are the most frequently occurring central nervous system tumour in 5- to 19-year-olds. Recent reports have highlighted the importance of MAPK pathway activation in PAs, particularly through a tandem duplication leading to an oncogenic BRAF fusion gene. Here, we report two alternative mechanisms resulting in MAPK activation in PAs. Firstly, in striking similarity to the common BRAF fusion, tandem duplication at 3p25 was observed, which produces an in-frame oncogenic fusion between SRGAP3 and RAF1. This fusion includes the Raf1 kinase domain, and shows elevated kinase activity when compared with wild-type Raf1. Secondly, a novel 3 bp insertion at codon 598 in BRAF mimics the hotspot V600E mutation to produce a transforming, constitutively active BRaf kinase. Although these two alterations are not common, they bring the number of cases with an identified ‘hit’ on the Ras/Raf-signalling pathway to 36 from our series of 44 (82%), confirming its central importance to the development of pilocytic astrocytomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bonner T, O'Brien SJ, Nash WG, Rapp UR, Morton CC, Leder P . (1984). The human homologs of the raf (mil) oncogene are located on human chromosomes 3 and 4. Science 223: 71–74.

    Article  CAS  Google Scholar 

  • Central Brain Tumour Registry of the United States (2005). Statistical Report: Primary Brain Tumours in the United States, 1997–2001. CBTRUS: Chicago, IL.

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. (2002). Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Article  CAS  Google Scholar 

  • Dirven CM, Mooij JJ, Molenaar WM . (1997). Cerebellar pilocytic astrocytoma: a treatment protocol based upon analysis of 73 cases and a review of the literature. Childs Nerv Syst 13: 17–23.

    Article  CAS  Google Scholar 

  • Emuss V, Garnett M, Mason C, Marais R . (2005). Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res 65: 9719–9726.

    Article  CAS  Google Scholar 

  • Endris V, Wogatzky B, Leimer U, Bartsch D, Zatyka M, Latif F et al. (2002). The novel Rho-GTPase activating gene MEGAP/srGAP3 has a putative role in severe mental retardation. Proc Natl Acad Sci USA 99: 11754–11759.

    Article  CAS  Google Scholar 

  • Giannini C, Scheithauer BW . (1997). Classification and grading of low-grade astrocytic tumors in children. Brain Pathol 7: 785–798.

    Article  CAS  Google Scholar 

  • Icking A, Schilling K, Wiesenthal A, Opitz N, Muller-Esterl W . (2006). FCH/Cdc15 domain determines distinct subcellular localization of NOSTRIN. FEBS Lett 580: 223–228.

    Article  CAS  Google Scholar 

  • Janzarik WG, Kratz CP, Loges NT, Olbrich H, Klein C, Schafer T et al. (2007). Further Evidence for a Somatic KRAS Mutation in a Pilocytic Astrocytoma. Neuropediatrics 38: 61–63.

    Article  CAS  Google Scholar 

  • Jones DTW, Ichimura K, Liu L, Pearson DM, Plant K, Collins VP . (2006). Genomic analysis of pilocytic astrocytomas at 0.97 Mb resolution shows an increasing tendency toward chromosomal copy number change with age. J Neuropathol Exp Neurol 65: 1049–1058.

    Article  CAS  Google Scholar 

  • Jones DTW, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K et al. (2008). Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68: 8673–8677.

    Article  CAS  Google Scholar 

  • Le LQ, Parada LF . (2007). Tumor microenvironment and neurofibromatosis type I: connecting the GAPs. Oncogene 26: 4609–4616.

    Article  CAS  Google Scholar 

  • Listernick R, Charrow J, Gutmann DH . (1999). Intracranial gliomas in neurofibromatosis type 1. Am J Med Genet 89: 38–44.

    Article  CAS  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK . (2007). WHO Classification of Tumours of the Central Nervous System. IARC Press: Lyon, France, 309 pp.

    Google Scholar 

  • Maltzman TH, Mueller BA, Schroeder J, Rutledge JC, Patterson K, Preston-Martin S et al. (1997). Ras oncogene mutations in childhood brain tumors. Cancer Epidemiol Biomarkers Prev 6: 239–243.

    CAS  PubMed  Google Scholar 

  • Moretti S, Macchiarulo A, De Falco V, Avenia N, Barbi F, Carta C et al. (2006). Biochemical and molecular characterization of the novel BRAF(V599Ins) mutation detected in a classic papillary thyroid carcinoma. Oncogene 25: 4235–4240.

    Article  CAS  Google Scholar 

  • Office for National Statistics (2004). The Health of Children and Young People. Office for National Statistics: UK.

  • Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds Jr FH et al. (1983). Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci USA 80: 4218–4222.

    Article  CAS  Google Scholar 

  • Sharma MK, Zehnbauer BA, Watson MA, Gutmann DH . (2005). RAS pathway activation and an oncogenic RAS mutation in sporadic pilocytic astrocytoma. Neurology 65: 1335–1336.

    Article  Google Scholar 

  • Shimizu K, Nakatsu Y, Nomoto S, Sekiguchi M . (1986). Structure of the activated c-raf-1 gene from human stomach cancer. Princess Takamatsu Symp 17: 85–91.

    CAS  PubMed  Google Scholar 

  • Soderling SH, Guire ES, Kaech S, White J, Zhang F, Schutz K et al. (2007). A WAVE-1 and WRP signaling complex regulates spine density, synaptic plasticity, and memory. J Neurosci 27: 355–365.

    Article  CAS  Google Scholar 

  • Stanton Jr VP, Nichols DW, Laudano AP, Cooper GM . (1989). Definition of the human raf amino-terminal regulatory region by deletion mutagenesis. Mol Cell Biol 9: 639–647.

    Article  CAS  Google Scholar 

  • Tahira T, Ochiai M, Hayashi K, Nagao M, Sugimura T . (1987). Activation of human c-raf-1 by replacing the N-terminal region with different sequences. Nucleic Acids Res 15: 4809–4820.

    Article  CAS  Google Scholar 

  • Tomlinson FH, Scheithauer BW, Hayostek CJ, Parisi JE, Meyer FB, Shaw EG et al. (1994). The significance of atypia and histologic malignancy in pilocytic astrocytoma of the cerebellum: a clinicopathologic and flow cytometric study. J Child Neurol 9: 301–310.

    Article  CAS  Google Scholar 

  • Yang Y, Marcello M, Endris V, Saffrich R, Fischer R, Trendelenburg MF et al. (2006). MEGAP impedes cell migration via regulating actin and microtubule dynamics and focal complex formation. Exp Cell Res 312: 2379–2393.

    Article  CAS  Google Scholar 

  • Zebisch A, Troppmair J . (2006). Back to the roots: the remarkable RAF oncogene story. Cell Mol Life Sci 63: 1314–1330.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr MG McCabe, Dr M Dimitriadi, Miss S Rigby, Miss F McDuff, Dr S Turner and Professor Y Yuasa for their help and for reagents. We also thank the Mapping and Microarray Facility groups of the Wellcome Trust Sanger Institute, UK and the Centre for Microarray resources in the Department of Pathology, University of Cambridge for technical assistance. This work was supported by grants from Cancer Research UK, the Samantha Dickson Brain Tumour Trust and CAMPOD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D T W Jones.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, D., Kocialkowski, S., Liu, L. et al. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 28, 2119–2123 (2009). https://doi.org/10.1038/onc.2009.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.73

Keywords

This article is cited by

Search

Quick links