Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells

Abstract

Activating mutations in the KRAS gene are among the most prevalent genetic changes in human cancers. To identify synthetic lethal interactions in cancer cells harbouring mutant KRAS, we performed a large-scale screen in isogenic paired colon cancer cell lines that differ by a single allele of mutant KRAS using an inducible short hairpin RNA interference library. Snail2, a zinc finger transcriptional repressor encoded by the SNAI2 gene, was found to be selectively required for the long-term survival of cancer cells with mutant KRAS that have undergone epithelial–mesenchymal transition (EMT), a transdifferentiation event that is frequently seen in advanced tumours and is promoted by RAS activation. Snail2 expression is regulated by the RAS pathway and is required for EMT. Our findings support Snail2 as a possible target for the treatment of the broad spectrum of human cancers of epithelial origin with mutant RAS that have undergone EMT and are characterized by a high degree of chemoresistance and radioresistance.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alves CC, Carneiro F, Hoefler H, Becker KF . (2009). Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci 14: 3035–3050.

    Article  Google Scholar 

  • Barbera MJ, Puig I, Domínguez D, Julien-Grille S, Guaita-Esteruelas S, Peiró S et al. (2004). Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23: 7345–7354.

    Article  CAS  Google Scholar 

  • Bernards R, Brummelkamp TR, Beijersbergen RL . (2006). shRNA libraries and their use in cancer genetics. Nat Methods 3: 701–706.

    Article  CAS  Google Scholar 

  • Cobaleda C, Perez-Caro M, Vicente-Duenas C, Sanchez-Garcia I . (2007). Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annu Rev Genet 41: 41–61.

    Article  CAS  Google Scholar 

  • Come C, Magnino F, Bibeau F, De Santa Barbara P, Becker KF, Theillet C et al. (2006). Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res 12: 5395–5402.

    Article  CAS  Google Scholar 

  • Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze'ev A . (2003). Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol 163: 847–857.

    Article  CAS  Google Scholar 

  • Cully M, Downward J . (2008). SnapShot: Ras Signaling. Cell 133: 1292–1292 el.

    Article  CAS  Google Scholar 

  • Dajee M, Tarutani M, Deng H, Cai T, Khavari PA . (2002). Epidermal Ras blockade demonstrates spatially localized Ras promotion of proliferation and inhibition of differentiation. Oncogene 21: 1527–1538.

    Article  CAS  Google Scholar 

  • Di Nicolantonio F, Arena S, Gallicchio M, Zecchin D, Martini M, Flonta SE et al. (2008). Replacement of normal with mutant alleles in the genome of normal human cells unveils mutation-specific drug responses. Proc Natl Acad Sci USA 105: 20864–20869.

    Article  CAS  Google Scholar 

  • Dobzhansky T . (1946). Genetics of natural populations. Xiii. Recombination and variability in populations of Drosophila Pseudoobscura. Genetics 31: 269–290.

    CAS  Google Scholar 

  • Downward J . (2003). Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3: 11–22.

    Article  CAS  Google Scholar 

  • Downward J . (2004). Use of RNA interference libraries to investigate oncogenic signalling in mammalian cells. Oncogene 23: 8376–8383.

    Article  CAS  Google Scholar 

  • Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW et al. (2005). The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 37: 1047–1054.

    Article  CAS  Google Scholar 

  • Hajra KM, Chen DY, Fearon ER . (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62: 1613–1618.

    CAS  Google Scholar 

  • Hartwell LH, Szankasi P, Roberts CJ, Murray AW, Friend SH . (1997). Integrating genetic approaches into the discovery of anticancer drugs. Science 278: 1064–1068.

    Article  CAS  Google Scholar 

  • Hemavathy K, Ashraf SI, Ip YT . (2000). Snail/slug family of repressors: slowly going into the fast lane of development and cancer. Gene 257: 1–12.

    Article  CAS  Google Scholar 

  • Huber MA, Kraut N, Beug H . (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548–558.

    Article  CAS  Google Scholar 

  • Inoue A, Seidel MG, Wu W, Kamizono S, Ferrando AA, Bronson RT et al. (2002). Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2: 279–288.

    Article  Google Scholar 

  • Iorns E, Lord CJ, Turner N, Ashworth A . (2007). Utilizing RNA interference to enhance cancer drug discovery. Nat Rev Drug Discov 6: 556–568.

    Article  CAS  Google Scholar 

  • Jiang R, Lan Y, Norton CR, Sundberg JP, Gridley T . (1998). The Slug gene is not essential for mesoderm or neural crest development in mice. Dev Biol 198: 277–285.

    Article  CAS  Google Scholar 

  • Joyce T, Cantarella D, Isella C, Medico E, Pintzas A . (2009). A molecular signature for epithelial to mesenchymal transition in a human colon cancer cell system is revealed by large-scale microarray analysis. Clin Exp Metastasis 26: 569–587.

    Article  CAS  Google Scholar 

  • Kaelin Jr WG . (2005). The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5: 689–698.

    Article  CAS  Google Scholar 

  • Kajita M, McClinic KN, Wade PA . (2004). Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 24: 7559–7566.

    Article  CAS  Google Scholar 

  • Karnoub AE, Weinberg RA . (2008). Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9: 517–531.

    Article  CAS  Google Scholar 

  • Katoh M . (2005). Comparative genomics on SNAI1, SNAI2, and SNAI3 orthologs. Oncol Rep 14: 1083–1086.

    CAS  Google Scholar 

  • Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY et al. (2009). Snail and Slug mediate radio- and chemo-resistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27: 2059–2068.

    Article  CAS  Google Scholar 

  • Larue L, Bellacosa A . (2005). Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene 24: 7443–7454.

    Article  CAS  Google Scholar 

  • Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M et al. (2000). Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 14: 2610–2622.

    Article  CAS  Google Scholar 

  • Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137: 835–848.

    Article  CAS  Google Scholar 

  • Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G et al. (2006). A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441: 106–110.

    Article  CAS  Google Scholar 

  • Nieto MA . (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3: 155–166.

    Article  CAS  Google Scholar 

  • Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E . (1996). TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10: 2462–2477.

    Article  CAS  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  Google Scholar 

  • Peinado H, Quintanilla M, Cano A . (2003). Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 278: 21113–21123.

    Article  CAS  Google Scholar 

  • Perez-Losada J, Sanchez-Martin M, Perez-Caro M, Perez-Mancera PA, Sanchez-Garcia I . (2003). The radioresistance biological function of the SCF/kit signaling pathway is mediated by the zinc-finger transcription factor Slug. Oncogene 22: 4205–4211.

    Article  CAS  Google Scholar 

  • Perez-Mancera PA, Gonzalez-Herrero I, Perez-Caro M, Gutierrez-Cianca N, Flores T, Gutierrez-Adan A et al. (2005). SLUG in cancer development. Oncogene 24: 3073–3082.

    Article  CAS  Google Scholar 

  • Saegusa M, Hashimura M, Kuwata T, Okayasu I . (2009). Requirement of the Akt/beta-catenin pathway for uterine carcinosarcoma genesis, modulating E-cadherin expression through the transactivation of slug. Am J Pathol 174: 2107–2115.

    Article  CAS  Google Scholar 

  • Schmidt CR, Gi YJ, Patel TA, Coffey RJ, Beauchamp RD, Pearson AS . (2005). E-cadherin is regulated by the transcriptional repressor SLUG during Ras-mediated transformation of intestinal epithelial cells. Surgery 138: 306–312.

    Article  Google Scholar 

  • Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137: 821–834.

    Article  CAS  Google Scholar 

  • Shaffer AL, Emre NC, Lamy L, Ngo VN, Wright G, Xiao W et al. (2008). IRF4 addiction in multiple myeloma. Nature 454: 226–231.

    Article  CAS  Google Scholar 

  • Shioiri M, Shida T, Koda K, Oda K, Seike K, Nishimura M et al. (2006). Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer 94: 1816–1822.

    Article  CAS  Google Scholar 

  • Shirasawa S, Furuse M, Yokoyama N, Sasazuki T . (1993). Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science 260: 85–88.

    Article  CAS  Google Scholar 

  • Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N et al. (2009). A gene expression signature associated with ‘K-Ras addiction’ reveals regulators of EMT and tumor cell survival. Cancer Cell 15: 489–500.

    Article  CAS  Google Scholar 

  • Thiery JP, Sleeman JP . (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.

    Article  CAS  Google Scholar 

  • Thomson S, Buck E, Petti F, Griffin G, Brown E, Ramnarine N et al. (2005). Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res 65: 9455–9462.

    Article  CAS  Google Scholar 

  • Vannini I, Bonafe M, Tesei A, Rosetti M, Fabbri F, Storci G et al. (2007). Short interfering RNA directed against the SLUG gene increases cell death induction in human melanoma cell lines exposed to cisplatin and fotemustine. Cell Oncol 29: 279–287.

    CAS  Google Scholar 

  • Vitali R, Mancini C, Cesi V, Tanno B, Mancuso M, Bossi G et al. (2008). Slug (SNAI2) down-regulation by RNA interference facilitates apoptosis and inhibits invasive growth in neuroblastoma preclinical models. Clin Cancer Res 14: 4622–4630.

    Article  CAS  Google Scholar 

  • Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11: 694–704.

    Article  CAS  Google Scholar 

  • Wang Z, Wade P, Mandell KJ, Akyildiz A, Parkos CA, Mrsny RJ et al. (2007). Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor slug. Oncogene 26: 1222–1230.

    Article  CAS  Google Scholar 

  • Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM et al. (2005). Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 123: 641–653.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alberto Bardelli for providing SW48 and SW48 KRAS G13D cells and Senji Shirasawa for providing HCT-116, HKe-3 and HKh-2 cells. This work was supported by funding from Cancer Research UK and from the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Downward.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Ngo, V., Marani, M. et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene 29, 4658–4670 (2010). https://doi.org/10.1038/onc.2010.218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.218

Keywords

This article is cited by

Search

Quick links